Processing math: 100%
14.若等差數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足a1=b1=-1,a4=b4=8,則a22=1.

分析 利用等差數(shù)列求出公差,等比數(shù)列求出公比,然后求解第二項(xiàng),即可得到結(jié)果.

解答 解:等差數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足a1=b1=-1,a4=b4=8,
設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
可得:8=-1+3d,d=3,a2=2;
8=-q3,解得q=-2,∴b2=2.
可得a22=1.
故答案為:1.

點(diǎn)評(píng) 本題考查等差數(shù)列以及等比數(shù)列的通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=cos(x+π3),則下列結(jié)論錯(cuò)誤的是(  )
A.f(x)的一個(gè)周期為-2πB.y=f(x)的圖象關(guān)于直線(xiàn)x=8π3對(duì)稱(chēng)
C.f(x+π)的一個(gè)零點(diǎn)為x=π6D.f(x)在(π2,π)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知曲線(xiàn)C1:y=cosx,C2:y=sin(2x+2π3),則下面結(jié)論正確的是(  )
A.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移π6個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移π12個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移π6個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的12倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移π12個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知sinα-cosα=43,則sin2α=( �。�
A.-79B.-29C.29D.79

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線(xiàn)C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0,12)作直線(xiàn)l與拋物線(xiàn)C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線(xiàn)分別與直線(xiàn)OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).
(1)求拋物線(xiàn)C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;
(2)求證:A為線(xiàn)段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線(xiàn)AB1與BC1所成角的余弦值為( �。�
A.32B.155C.105D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}中,b1=1,bn+1-bn=2
(1)求數(shù)列{an},{bn}的通項(xiàng)an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如圖:

(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;
(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
 箱產(chǎn)量<50kg                  箱產(chǎn)量≥50kg
舊養(yǎng)殖法           
新養(yǎng)殖法             
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).
附:
P(K2≥k)   0.0500.010           0.001            
k3.841      6.635     10.828    
K2=nadbc2a+bc+da+cb+d

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷