11.某企業(yè)共有3 200名職工,其中青、中、老年職工的比例為3:5:2.若從所有職工中抽取一個(gè)容量為400的樣本,則采用哪種抽樣方法更合理?青、中、老年職工應(yīng)分別抽取多少人?每人被抽取的可能性相同嗎?

分析 由于中、青、老年職工的比例不同,故用分層抽樣的方法更合理,確定抽樣比是$\frac{400}{3200}$=$\frac{1}{8}$,即可求出抽取的職工數(shù).

解答 解:因?yàn)榭傮w由差異明顯的三部分(青、中、老年)組成,所以采用分層抽樣的方法更合理.
由樣本容量為400,總體容量為3 200可知,抽樣比是$\frac{400}{3200}$=$\frac{1}{8}$,所以每人被抽到的可能性相同,均為$\frac{1}{8}$.
因?yàn)榍、中、老年職工的比例?:5:2,所以應(yīng)分別抽。
青年職工400×$\frac{3}{10}$=120(人);
中年職工400×$\frac{5}{10}$=200(人);
老年職工400×$\frac{2}{10}$=80(人).

點(diǎn)評(píng) 本題考查了分層抽樣,分層抽樣中每個(gè)個(gè)體被抽取的可能性是相等的,每一層被抽取的比例數(shù)相等,此題是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知數(shù)列{an}滿足lgxn+1=1+lgxn(n∈N*)且x1+x2+…+x100=1,求lg(x101+x102+…+x200)的值;
(2)已知數(shù)列{an}滿足a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{n}}{n}$=2n,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),f(x)=2x,則有
①2是函數(shù)f(x)的周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0.
其中所有正確的命題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ax2+(1-a)x-1-lnx,a∈R.
(1)若函數(shù)在區(qū)間(2,4)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列不等式中,正確的是(  )
A.若x∈R,則$x+\frac{4}{x}≥4$B.若x∈R,則${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,則${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b為正實(shí)數(shù),則$\frac{{\sqrt{a}+\sqrt}}{2}≥\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知圓C關(guān)于直線x-y+1=0對(duì)稱的圓的方程為:(x-1)2+(y-1)2=1,則圓C的方程為(  )
A.x2+(y+2)2=1B.(x-2)2+y2=1C.x2+(y-2)2=1D.(x-2)2+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列{an}滿足a1=1,$\sqrt{\frac{1}{{{a_n}^2}}+2}$=$\frac{1}{{{a_{n+1}}}}$,數(shù)列{an2}的前n項(xiàng)和記為Sn,若有S2n+1-Sn≤$\frac{t}{20}$對(duì)任意的n∈N*恒成立,則正整數(shù)t的最小值為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-4,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{3x-y+3≥0}\\{x-2y+1≤0}\end{array}\right.$的解集記為D,有下面四個(gè)命題:
p1:?(x,y)∈D,2x+3y≥-1;   
p2:?(x,y)∈D,2x-5y≥-3;
p3:?(x,y)∈D,$\frac{y-1}{2-x}$≤$\frac{1}{3}$;      
p4:?(x,y)∈D,x2+y2+2y≤1.
其中的真命題是( 。
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

同步練習(xí)冊(cè)答案