某校高三學(xué)生數(shù)學(xué)調(diào)研測(cè)試后,隨機(jī)地抽取部分學(xué)生進(jìn)行成績(jī)統(tǒng)計(jì),如圖所示是抽取出惡報(bào)的所有學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)結(jié)果的頻率分布直方圖.

(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計(jì)該校高三學(xué)生數(shù)學(xué)調(diào)研測(cè)試的平均分;
(2)用分層抽樣的方法在分?jǐn)?shù)段為(110,130]的學(xué)生中抽取一個(gè)容量為6的樣本,則(110,130],(120,130]的學(xué)生分別抽取多少人?
(3)將(2)中抽取的樣本看成一個(gè)總體,從中任取2人,求恰好有1人在分?jǐn)?shù)段(110,120]的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(1)同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,將中點(diǎn)值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;
(2)先計(jì)算出在[110,120)、[120,130)分?jǐn)?shù)段抽取的人數(shù)比例,再有樣本的容量求出抽取的人數(shù);
(3)設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)為事件A,然后列出基本事件空間包含的基本事件,以及事件A包含的基本事件,最后將包含事件的個(gè)數(shù)求出題目比值即可.
解答: 解:(1)該校高三學(xué)生數(shù)學(xué)調(diào)研測(cè)試的平均分為
.
x
=75×0.005×10+85×0.020×10+95×0.035×10+105×0.025×10+115×0.010×10+125×0.005×10=98(分)
(2)設(shè)在(110,120],(120,130]的學(xué)生分別抽取x、y人,
根據(jù)分層抽樣的方法得:x:y=2:1,
∵在(110,130]的學(xué)生中抽取一個(gè)容量為6的樣本,
∴在(110,120]分?jǐn)?shù)段抽取4人,在(120,130]分?jǐn)?shù)段抽取2人;
(3)設(shè)從樣本中任取2人,恰好有1人在分?jǐn)?shù)段(110,120]為事件A,
在(110,120]分?jǐn)?shù)段抽取4人,記為1、2、3、4;在(120,130]分?jǐn)?shù)段抽取2人,分別記為a,b;
則基本事件空間包含的基本事件有:(1,2)、(1,3)、(1,4)、(1,a)、(1,b)、
(2,3)、(2,4)、(2,a)、(2、b)、(3,4)、(3,a)、(3,b)、(4,a)、(4,b)、(a,b)共15種,
則事件A包含的基本事件有:(1,a)、(1,b)、(2,a)、(2、b)、(3,a)、(3,b)、(4,a)、(4,b)共8種,
根據(jù)古典概型的計(jì)算公式得,P(A)=
8
15
點(diǎn)評(píng):本題主要考查了利用頻率分布直方圖求平均數(shù),以及由古典概型的計(jì)算公式求隨機(jī)事件的概率的有關(guān)問(wèn)題,考查運(yùn)用統(tǒng)計(jì)知識(shí)解決簡(jiǎn)單實(shí)際問(wèn)題的能力,數(shù)據(jù)處理能力和運(yùn)用意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)簡(jiǎn)單組合體的三視圖及尺寸如圖所示(單位:cm),該組合體的體積為(  )
A、42cm3
B、48cm3
C、56cm3
D、44cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上.
(1)求a1,a2;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若bn=
1
anan+1an+2
,求證數(shù)列{bn}的前n項(xiàng)和Tn
1
60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=t(t為非零常數(shù)),其前n項(xiàng)和為Sn,滿足an+1=2Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若對(duì)任意的n∈N*,都有λan>n(n+1)成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-sin(2x+π).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向右平移
π
12
個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos(x-
π
6
),sin(x-
π
4
)),
b
=(cos(x-
π
6
),sin(x+
π
4
)),f(x)=2
a
b
-1.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-
π
12
,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx,其中a≠0.
(1)已知點(diǎn)P(1,0)在y=f(x)的圖象上,求m的值;
(2)當(dāng)a=8時(shí),設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m-2x+4
x-2
(m≠0)
,滿足條件f(a+x)+f(a-x)=2b(x≠2),則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
1
3
,θ∈(-
π
2
π
2
),則sin(π-θ)sin(
3
2
π-θ)的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案