如圖,已知=a,=b,任意點(diǎn)M關(guān)于點(diǎn)A的對稱點(diǎn)為S,點(diǎn)S關(guān)于點(diǎn)B的對稱點(diǎn)為N.設(shè)|a|=1,|b|=2,a與b的夾角為30°,若⊥(λa+b),則實(shí)數(shù)λ=    .
由題意,AB為△SMN的中位線.
所以=2.
=2(-)=2(b-a).
⊥(λa+b),得·(λa+b)=0,
即2(b-a)·(λa+b)=0,
(b-a)·(λa+b)=0,
所以-λa2+b2+(λ-1)a·b=0,
即-λ+4+1×2×cos30°(λ-1)=0,
解得λ=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn).
(1)求證:恒為銳角;
(2)若四邊形為菱形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓交于不同的兩點(diǎn),且,其中是坐標(biāo)原點(diǎn),則實(shí)數(shù)的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)A(2,3),B(5,4),C(7,10),若+λ· (λ∈R),試問:
(1) λ為何值時(shí),點(diǎn)P在第一、三象限角平分線上;
(2) λ為何值時(shí),點(diǎn)P在第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a=(cosθ,1,sinθ),b=(sinθ,1,cosθ),則向量a+b與a-b的夾角是(  )
A.0°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,=1,=2,則AB邊的長度為(  )
A.1 B.3
C.5 D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平行四邊形ABCD中,點(diǎn)E是AD的中點(diǎn),BE與AC相交于點(diǎn)F,若=m+n(m,n∈R),則的值為(  )
A.B.-C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下四個(gè)命題:
①四邊形ABCD是菱形的充要條件是=,且||=||;
②點(diǎn)G是△ABC的重心,則++=0;
③若=3e1,=-5e1,且||=||,則四邊形ABCD是等腰梯形;
④若||=8,||=5,則3≤||≤13.
其中所有正確命題的序號為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量,,,則“”是“”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案