設(shè)的一個(gè)極值點(diǎn);

   (I)求ab的關(guān)系式(用a表示b),并求的單調(diào)區(qū)間;

   (II)設(shè)成立,求a的取值范圍.

解:(I)

                                                         

                                                                                 

                                                                

上為減函數(shù)。                                                           

上為減函數(shù)。                                                                    

   (II)當(dāng)

上為減函數(shù),

                                                                                

                                                      

                                                    

                                              

若存在成立。

只要                                                            

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x=3是函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個(gè)極值點(diǎn).
(Ⅰ)求a與b的關(guān)系式(用a表示b),并求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)a>0,g(x)=(a2+
254
)ex
.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=t,a2=t2,其中t>0,x=
t
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個(gè)極值點(diǎn)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)當(dāng)t=2時(shí),令bn=
an-1
(an+1)(an+1+1)
,數(shù)列{bn}前n項(xiàng)的和為Sn,求證:Sn
1
6

(Ⅲ)設(shè)cn=
1
2
an
(2n+1)(2n+1+1)
,數(shù)列{cn}前n項(xiàng)的和為Tn,求同時(shí)滿足下列兩個(gè)條件的t的值:
(1)Tn
1
6

(2)對于任意的m∈(0,
1
6
)
,均存在k∈N*,當(dāng)n≥k時(shí),Tn>m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分12分)

       已知:

   (1)設(shè)的一個(gè)極值點(diǎn)。求在區(qū)間上的最大值和最小值;

   (2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河北省正定中學(xué)高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分12分)
已知:
(1)設(shè)的一個(gè)極值點(diǎn)。求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案