在數(shù)列{an}中,a1=2,a4=8,且滿足an+2=2an+1-an(n∈N*)
(1)求數(shù)列{an}的通項公式
(2)設bn=2n-1·an,求數(shù)列{bn}的前n項和sn


(1){an}為等差數(shù)列
(2)sn=(n-1)2n+1+2

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列(an)中,an=2n-7,則當前n項和取得最小值時的n的等于(  )
A、3B、4C、3或4D、4或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)在數(shù)列(an)中,an=2n-1,若一個7行12列的矩陣的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),則該矩陣元素能取到的不同數(shù)值的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省高三五月適應性考試(三)理科數(shù)學試卷(解析版) 題型:選擇題

在數(shù)列{an}中,an+1=,若a1=,則a2012的值為

   A、.         B、.             C、             D、

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海 題型:單選題

在數(shù)列(an)中,an=2n-1,若一個7行12列的矩陣的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),則該矩陣元素能取到的不同數(shù)值的個數(shù)為( 。
A.18B.28C.48D.63

查看答案和解析>>

科目:高中數(shù)學 來源:2013年上海市高考數(shù)學試卷(理科)(解析版) 題型:選擇題

在數(shù)列(an)中,an=2n-1,若一個7行12列的矩陣的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),則該矩陣元素能取到的不同數(shù)值的個數(shù)為( )
A.18
B.28
C.48
D.63

查看答案和解析>>

同步練習冊答案