(本小題滿分12分)
已知橢圓 及直線,當(dāng)直線和橢圓有公共點(diǎn)時(shí).
(1)求實(shí)數(shù)的取值范圍;
(2)求被橢圓截得的最長(zhǎng)的弦所在的直線的方程.

(1);  (2) y=x

解析試題分析:(1)直線與橢圓有公共點(diǎn),說(shuō)明它們的方程組成的方程組有解,因而它們的方程聯(lián)立消去y后得到關(guān)于x的一元二次方程的判別式大于或等于零,從而得到m的取值范圍.
(2)在(1)的基礎(chǔ)上利用弦長(zhǎng)公式得到關(guān)于m的函數(shù)關(guān)系式,再利用函數(shù)的方法求最值即可,事實(shí)上應(yīng)該是直線y=x+m過(guò)橢圓中心時(shí)弦長(zhǎng)最長(zhǎng).
考點(diǎn):直線與橢圓的位置關(guān)系..
點(diǎn)評(píng):(1)直線與橢圓的位置關(guān)系可利用它們組成的方程組的公共解的個(gè)數(shù)來(lái)判斷,當(dāng)沒(méi)有公共解時(shí),此時(shí),直線與橢圓相離;當(dāng)有一個(gè)公共點(diǎn)時(shí),此時(shí),直線與橢圓相切;當(dāng)有兩個(gè)公共點(diǎn)時(shí),此時(shí),直線與橢圓相交.
(2)當(dāng)相交涉及最值時(shí)一般要利用韋達(dá)定理及判別式建立關(guān)于參數(shù)的函數(shù)關(guān)系式,從函數(shù)的角度求最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓與橢圓相似,且橢圓的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線與橢圓交于兩點(diǎn),且與橢圓交于兩點(diǎn).若線段與線段的中點(diǎn)重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點(diǎn),直線將線段分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過(guò)點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線過(guò)點(diǎn)
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過(guò)點(diǎn),且圓在點(diǎn)的切線恰是拋物線在點(diǎn)的切線,求圓的方程;
(Ⅲ)如圖,點(diǎn)軸上一點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),過(guò)點(diǎn)作一條直線與拋物線交于兩點(diǎn),若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
給定拋物線,是拋物線的焦點(diǎn),過(guò)點(diǎn)的直線相交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

分別是橢圓+=1()的左、右焦點(diǎn),是橢圓的上頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40,求a, b 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知拋物線過(guò)點(diǎn).(1)求拋物線的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于為坐標(biāo)原點(diǎn))的直線,使得直線與拋物線有公共點(diǎn),且直線
距離等于?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),且,,
求證:為定值,并計(jì)算出該定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案