已知下列命題:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p、q為兩個命題,若“p∨q”為假命題,則“¬p∧¬q為真命題”;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號是( 。
A、①②③B、②④C、②D、④
考點:命題的真假判斷與應用
專題:簡易邏輯
分析:①利用命題的否定即可判斷出;
②由“p∨q”為假命題,則p與q都為假命題,可得¬p,¬q都為真命題,即可判斷出“¬p∧¬q為真命題”;
③“a>2”是“a>5”的必要不充分條件;
④“若xy=0,則x=0且y=0”是假命題,即可判斷出其逆否命題為假命題的真假.
解答: 解:①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,因此不正確;
②已知p、q為兩個命題,若“p∨q”為假命題,則p與q都為假命題,∴¬p,¬q都為真命題,∴“¬p∧¬q為真命題”,正確;
③“a>2”是“a>5”的必要不充分條件,不正確;
④“若xy=0,則x=0且y=0”是假命題,因其逆否命題為假命題,因此不正確.
綜上可得:其中所有真命題的序號是②.
故選:C.
點評:本題考查了簡易邏輯的判定方法,考查了推理能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

化簡:
1-2sin10°cos10°
cos10°-
1-cos210°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2,x3∈(0,
π
2
),a=
1+sinx1
x1
,b=
1+sinx2
x2
,c=
1+sinx3
x3
,且x1>x2>x3,則a,b,c的大小關系為(  )
A、a>b>c
B、c>b>a
C、b>c>a
D、大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐S-ABCD,AD∥BC,∠ABC=90°,面SAB⊥底面ABCD,SA=SB=
3
2
a,BC=2a,AB=AD=a,點E,F(xiàn),M分別是SB,BC,CD的中點.
(Ⅰ)求四棱錐S-ABCD的體積;
(Ⅱ)證明:AB⊥SM;
(Ⅲ)證明:SD∥面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設e是橢圓
x2
4
+
y2
k
=1
的離心率,且e∈(
1
2
, 1)
,則實數(shù)k的取值范圍是( 。
A、(0,3)
B、(3,
16
3
C、(0,3)∪( 
16
3
,+∞)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是一個幾何體的三視圖,則該幾何體的體積為( 。
A、2π+8B、8π+8
C、4π+8D、6π+8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人手中有5張撲克牌,其中2張為不同花色的2,3張為不同花色的A,有5次出牌機會,每次只能出一種點數(shù)的牌但張數(shù)不限,此人有多少種不同的出牌方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某桶裝水經(jīng)營部每天的房租,人員工資等固定成本為200元,每桶水的進價是5元,銷售價x(元)與日均銷售量g(x)(桶)的關系如下表,為了收費方便,經(jīng)營部將銷售價定為整數(shù),并保持經(jīng)營部每天盈利.
x6789101112
g(x)480440400360320280240
(1)寫出g(x)-g(x+1)的值,并解釋其實際意義;
(2)求g(x)表達式,并求其定義域;
(3)求經(jīng)營部利潤f(x)表達式,請問經(jīng)營部怎樣定價才能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差不為0,其前n項和為Sn,等比數(shù)列{bn}的前n項和為Bn,公比為q,且q≠-1,求
lim
n→∞
(
Sn
nan
+
Bn
bn
)
的值.

查看答案和解析>>

同步練習冊答案