設(shè)
m
,
n
是兩個(gè)單位向量,向量
a
=
m
-2
n
,且
a
=(2,1),則
m
,
n
的夾角為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量模的計(jì)算公式和數(shù)量積運(yùn)算性質(zhì)即可得出.
解答: 解:由
a
=(2,1),得|
a
|=
5
,
a
2
=(
m
-2
n
)2
=5,
化為
m
2
+4
n
2
-4
m
n
=5,
m
n
是兩個(gè)單位向量,
∴1+4-4
m
n
=5.
m
n
=0,
m
n
的夾角為90°.
故答案為:90°.
點(diǎn)評(píng):本題考查了向量模的計(jì)算公式和數(shù)量積運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|=1,
a
b
=1.
(1)求|
a
+
b
|的值;   
(2)若k
a
+
b
a
-3
b
垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2x與y=g(x)的圖象關(guān)于直線y=x對(duì)稱,則g(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在m∈R,使函數(shù)f(x)=|x2-16|-x2+4x-m在[-1,a](a∈N*)上有三個(gè)零點(diǎn),則滿足條件的a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)P(-2,0)到其漸近線的距離為
2
6
3
.若過(guò)P點(diǎn)作斜率為
2
2
的直線交雙曲線于A,B兩點(diǎn),交y軸于M點(diǎn),且PM是PA與PB的等比中項(xiàng),則雙曲線的半焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ex+e-x的導(dǎo)函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=loga(x2-ax+3)(a>0且a≠1),滿足對(duì)任意實(shí)數(shù)x1、x2,當(dāng)x2>x1
a
2
時(shí),f(x1)-f(x2)<0,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a9=0,則有a1+a2+…+an=a1+a2+…+a17-n(其中n<17,且n∈N*).類比上述性質(zhì),在等比數(shù)列{bn}中,若b10=1,則有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kx,g(x)=
lnx
x
,如果關(guān)于x的方程f(x)=g(x)在區(qū)間[
1
e
,e]內(nèi)有兩個(gè)實(shí)數(shù)解,那么實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案