3.在區(qū)間[-3,4]上隨機(jī)選取一個(gè)數(shù)x,則-2≤x≤1的概率為(  )
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{5}{7}$D.$\frac{4}{7}$

分析 根據(jù)幾何概型的概率公式進(jìn)行求解即可.

解答 解:在區(qū)間[-3,4]上隨機(jī)選取一個(gè)數(shù)x,則-2≤x≤1的概率為P=$\frac{1-(-2)}{4-(-3)}$=$\frac{3}{7}$,
故選:B

點(diǎn)評 本題主要考查幾何概型的概率的計(jì)算,根據(jù)長度關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x≥2,當(dāng)且僅當(dāng)x=2時(shí),x+$\frac{4}{x}$取得最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=24,b3S3=135.
(1)求an與bn;
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若$\overrightarrow{OA}$=(-1,2),$\overrightarrow{OB}$=(1,-1),則$\overrightarrow{AB}$=( 。
A.(-2,3)B.(0,1)C.(-1,2)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的首項(xiàng)a1=3,且滿足an+1=3an+2×3n+1,(n∈N*).
(1)設(shè)bn=$\frac{{a}_{n}}{{3}^{n}}$,判斷數(shù)列{bn}是否為等差數(shù)列或等比數(shù)列,并證明你的結(jié)論;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)=-x3+bx+2在(1,+∞)上是減函數(shù),則b的取值范圍是( 。
A.[3,+∞)B.(3,+∞)C.(-∞,3]D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),它的一個(gè)頂點(diǎn)到一條漸近線的距離為d,已知d≥$\frac{\sqrt{2}}{3}$c(c為雙曲線的半焦距長),則雙曲線的離心率的取值范圍為(  )
A.[$\frac{\sqrt{6}}{2}$,2]B.[$\frac{\sqrt{6}}{2}$,$\sqrt{3}$]C.($\sqrt{2}$,$\sqrt{3}$]D.(1,$\frac{\sqrt{6}}{2}$)∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線C:x2-y2=2,記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的點(diǎn)E、F,若△OEF的面積為2$\sqrt{2}$,則直線l的方程為( 。
A.y=$\sqrt{2}$x+2B.y=-$\sqrt{2}$x+2C.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x-2D.y=$\sqrt{2}$x+2或y=-$\sqrt{2}$x+2

查看答案和解析>>

同步練習(xí)冊答案