已知橢圓的左、右焦點(diǎn)分別為,它的一條準(zhǔn)線為,過點(diǎn)的直線與橢圓交于、兩點(diǎn).當(dāng)軸垂直時(shí),.

(1)求橢圓的方程;

(2)若,求的內(nèi)切圓面積最大時(shí)正實(shí)數(shù)的值.

 

【答案】

(1);(2).

【解析】本試題主要是考查了橢圓的方程的求解以及,三角形的中內(nèi)切圓的性質(zhì)的運(yùn)用,結(jié)合向量工具表示面積。

解:(1)當(dāng)軸垂直時(shí), 

 得  即---------------------(2分)

 解得,,

故所求橢圓的方程為.----------------------------------(2分)

(2)由點(diǎn),,可設(shè),

① 當(dāng)軸垂直時(shí),

(其中的內(nèi)切圓半徑)

  

   ,此時(shí)可知------------------------------------(2分)

②當(dāng)軸不垂直時(shí),

不妨設(shè)直線的方程為

代入 得

 ---------------(2分)

從而可得 

又點(diǎn)到直線的距離.

(其中的內(nèi)切圓半徑)

  -------------------------------------------(2分)

知在區(qū)間上該函數(shù)單調(diào)遞增,

故當(dāng)時(shí),即直線的斜率不存在時(shí),最大為,亦即的內(nèi)切圓面積最大.

此時(shí)可知綜上所求為.----------------------2分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
PA
AB
=m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足=m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

查看答案和解析>>

同步練習(xí)冊(cè)答案