【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求的值;

)已知,求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

【答案】、;(.

【解析】試題分析: )根據(jù)優(yōu)秀率定義,由樣本中數(shù)學(xué)成績(jī)優(yōu)秀率,可得關(guān)于 的等式,解得 的值; )由()知 ,,可列出所有滿足條件的情況,找出其中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的組數(shù),利用古典概型的定義,可求得所要求概率.

試題解析:)由題意得,,解得,

,

.

)由題意,知,且,

滿足條件的:,

,

14組,且每組出現(xiàn)的可能性相同.

其中數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少有:6.

數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子元件廠對(duì)一批新產(chǎn)品的使用壽命進(jìn)行檢驗(yàn),并且廠家規(guī)定使用壽命在為合格品,使用壽命超過500小時(shí)為優(yōu)質(zhì)品,質(zhì)檢科抽取了一部分產(chǎn)品做樣本,經(jīng)檢測(cè)統(tǒng)計(jì)后,繪制出了該產(chǎn)品使用壽命的頻率分布直方圖(如圖):

(1)根據(jù)頻率分布直方圖估計(jì)該廠產(chǎn)品為合格品或優(yōu)質(zhì)品的概率,并估計(jì)該批產(chǎn)品的平均使用壽命;

(2)從這批產(chǎn)品中,采取隨機(jī)抽樣的方法每次抽取一件產(chǎn)品,抽取4次,若以上述頻率作為概率,記隨機(jī)變量為抽出的優(yōu)質(zhì)品的個(gè)數(shù),列出的分布列,并求出其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對(duì)任意的,都有.當(dāng)時(shí),.若直線與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)的值是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.

思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________, __________ _________

猜想: _______.

然后用數(shù)學(xué)歸納法證明.證明過程如下:

①當(dāng)時(shí),________________,猜想成立

②假設(shè)N*)時(shí),猜想成立,即_______

那么,當(dāng)時(shí),由已知,得_________

,兩式相減并化簡(jiǎn),得_____________(用含的代數(shù)式表示).

所以,當(dāng)時(shí),猜想也成立.

根據(jù)①和②,可知猜想對(duì)任何N*都成立.

思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________

由已知,寫出的關(guān)系式: _____________________,

兩式相減,得的遞推關(guān)系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點(diǎn).

(1)在圖中作一個(gè)平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:①;②當(dāng)時(shí), ;③;④當(dāng)秒時(shí), ;⑤當(dāng)的面積為時(shí),時(shí)間的值是;其中正確的結(jié)論是( )

A. ①⑤ B. ②⑤ C. ②③ D. ②④

查看答案和解析>>

同步練習(xí)冊(cè)答案