【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DEDC=AEBD.
【答案】
(1)證明:∵等腰梯形ABCD
∴∠ABC=∠DCB
又∵AB=CD,BC=CB,
∴△ABC≌△DCB
(2)證明:∵△ABC≌△DCB
∴∠ACB=∠DBC,
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC
∵ED∥AC,∴∠EDA=∠DAC,
∴∠EDA=∠DBC,∠EAD=∠DCB,
∴△ADE∽△CBD
∴DE:BD=AE:CD
∴DEDC=AEBD
【解析】(1)根據(jù)梯形為等腰梯形推斷出∠ABC=∠DCB,同時(shí)根據(jù)AB=CD,BC=CB,證明出△ABC≌△DCB.(2)根據(jù)(1)中△ABC≌△DCB推斷出∠ACB=∠DBC,同時(shí)根據(jù)AD∥BC和ED∥AC推斷出∠EDA=∠DBC,∠EAD=∠DCB,進(jìn)而根據(jù)相似三角形判定定理推斷出△ADE∽△CBD,進(jìn)而根據(jù)相似三角形的性質(zhì)求得DE:BD=AE:CD,推斷出DEDC=AEBD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的回歸方程 ;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計(jì)算回歸系數(shù) , .公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2, =λ .
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1﹣A1C1﹣D的大小為60°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1) 若,求的圖象在處的切線方程;
(2)若在定義域上是單調(diào)函數(shù),求的取值范圍;
(3)若存在兩個(gè)極值點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:an+1=an2﹣nan+1,n=1,2,3,…
(1)當(dāng)a1=2時(shí),求a2 , a3 , a4并由此猜測an的一個(gè)通項(xiàng)公式;
(2)當(dāng)a1≥3時(shí),證明對所有的n≥1,有
①an≥n+2
② .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市理論預(yù)測2007年到2011年人口總數(shù)與年份的關(guān)系如表所示
年份2007+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線性回歸方程;
(2)據(jù)此估計(jì)2012年該城市人口總數(shù).
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=(m2+m)+(m+1)i
(1)實(shí)數(shù)m為何值時(shí),復(fù)數(shù)z為純虛數(shù);
(2)若m=﹣2,求 的共軛復(fù)數(shù)的模.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是橢圓的右焦點(diǎn), 是坐標(biāo)原點(diǎn), ,過作的垂線交橢圓于, 兩點(diǎn), 的面積為.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與上下半橢圓分別交于點(diǎn)、,與軸交于點(diǎn),且,求的面積取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (x∈R).
(1)求函數(shù)f(x)的值域;
(2)①判斷函數(shù)f(x)的奇偶性;②用定義判斷函數(shù)f(x)的單調(diào)性;
(3)解不等式f(1﹣m)+f(1﹣m2)<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com