16.已知${(2{x^3}-\frac{1}{x})^n}$的展開式的常數(shù)項是第7項,則正整數(shù)n的值為( 。
A.6B.7C.8D.9

分析 利用通項公式即可得出.

解答 解:${(2{x^3}-\frac{1}{x})^n}$的展開式的第7項=${∁}_{n}^{6}(2{x}^{3})^{n-6}(-\frac{1}{x})^{6}$=2n-6${∁}_{n}^{6}$x3n-24,
令3n-24=0,解得n=8.
故選:C.

點評 本題考查了二項式定理的應(yīng)用、方程思想,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y-5≤0\\ x+y-4≤0\\ 3x+y-10≥0\end{array}\right.$,則z=x2+y2的最小值為( 。
A.$\sqrt{10}$B.10C.8D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,則四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積為( 。
A.(60+4$\sqrt{2}$)πB.(60+8$\sqrt{2}$)πC.(56+8$\sqrt{2}$)πD.(56+4$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.${({x^2}-\frac{1}{2x})^6}$展開式中的常數(shù)項是$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓E的左、右焦點分別為F1、F2,過F1且斜率為2的直線交橢圓E于P、Q兩點,若△PF1F2為直角三角形,則橢圓E的離心率為$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下說法正確的是(  )
①若x,y∈R,則“x=y“是“$xy≥{(\frac{x+y}{2})^2}$“的充要條件.
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
③“x2+2x≥ax在x∈[1,2]恒成立”?“對于x∈[1,2],有(x2+2x)min≥(ax)max
④命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題為真命題.
A.①②B.①②④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的中心在坐標(biāo)原點,一個焦點的坐標(biāo)為$(\sqrt{3},0)$,橢圓C經(jīng)過點P$(1,\frac{{\sqrt{3}}}{2})$.
(1)求橢圓C的方程; 
(2)設(shè)直線y=kx+b與橢圓C交于A,B兩點,若|AB|=2,△AOB的面積S=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.正項等比數(shù)列{an}的前n項和為Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,則a6=$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=lnx,g(x)=ax+$\frac{a-1}{x}$-3(a∈R).
(1)當(dāng)a=2時,解關(guān)于x的方程g(ex)=0(其中e為自然對數(shù)的底數(shù));
(2)求函數(shù)φ(x)=f(x)+g(x)的單調(diào)增區(qū)間;
(3)當(dāng)a=1時,記h(x)=f(x)•g(x),是否存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解?若存在,請求出λ的最小值;若不存在,請說明理由.(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

同步練習(xí)冊答案