分析 利用二項(xiàng)式展開式的通項(xiàng)公式求出展開式的常數(shù)項(xiàng)的表達(dá)式,列方程求出a的值.
解答 解:(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展開式中,
通項(xiàng)公式為:
Tr+1=${C}_{6}^{r}$•${(a\sqrt{x})}^{6-r}$•${(\frac{\sqrt{3}}{x})}^{r}$=a6-r•${(\sqrt{3})}^{r}$•${C}_{6}^{r}$•${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2;
∴展開式的常數(shù)項(xiàng)是a4•${(\sqrt{3})}^{2}$•${C}_{6}^{2}$=5,
解得a=±$\frac{\sqrt{3}}{3}$;
又a>0,∴a=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式的通項(xiàng)公式與應(yīng)用問(wèn)題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 3 | 6 | 6 | 3 | ||
贊成人數(shù) | 2 | 4 | 5 | 4 | 2 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±2 | B. | -2 | C. | ±4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{19}{3}$ | B. | $\frac{53}{8}$ | C. | $\frac{171}{6}$ | D. | $\frac{185}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$ | D. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com