13.已知(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展開式中的常數(shù)項(xiàng)是5,則a=$\frac{\sqrt{3}}{3}$.

分析 利用二項(xiàng)式展開式的通項(xiàng)公式求出展開式的常數(shù)項(xiàng)的表達(dá)式,列方程求出a的值.

解答 解:(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展開式中,
通項(xiàng)公式為:
Tr+1=${C}_{6}^{r}$•${(a\sqrt{x})}^{6-r}$•${(\frac{\sqrt{3}}{x})}^{r}$=a6-r•${(\sqrt{3})}^{r}$•${C}_{6}^{r}$•${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2;
∴展開式的常數(shù)項(xiàng)是a4•${(\sqrt{3})}^{2}$•${C}_{6}^{2}$=5,
解得a=±$\frac{\sqrt{3}}{3}$;
又a>0,∴a=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式的通項(xiàng)公式與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知關(guān)于x的函數(shù)g(x)=$\frac{2}{x}$-alnx(a∈R),f(x)=x2g(x).
(1)當(dāng)a=-2時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間($\frac{1}{e}$,e)內(nèi)有且只有一個(gè)極值點(diǎn),試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$α∈({0,\frac{π}{4}})$,$sin({α+\frac{π}{4}})=\frac{4}{5}$,則tanα=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.持續(xù)性的霧霾天氣嚴(yán)重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一.為此,某城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)選取了30人進(jìn)行調(diào)查,將他們的年齡(單位:歲)數(shù)據(jù)繪制成頻率分布直方圖(圖1),并將調(diào)查情況進(jìn)行整理后制成表2:
表2:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)3663
贊成人數(shù)245421
(Ⅰ)由于工作人員粗心,不小心將表2弄臟,遺失了部分?jǐn)?shù)據(jù),請(qǐng)同學(xué)們將表2中的數(shù)據(jù)恢復(fù),并估計(jì)該市公眾對(duì)“車輛限行”的贊成率和被調(diào)查者的年齡平均值;
(Ⅱ)把頻率當(dāng)作概率估計(jì)贊成車輛限行的情況,若從年齡在[55,65),[65,75]的被調(diào)查者中隨機(jī)抽取一個(gè)人進(jìn)行追蹤調(diào)查,求被選2人中至少一個(gè)人贊成車輛限行的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若圓x2+y2+4x-2y-a2=0截直線x+y+5=0所得弦的長(zhǎng)度為2,則實(shí)數(shù)a=( 。
A.±2B.-2C.±4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義[x]表示不超過(guò)x的最大整數(shù),例如[2.11]=2,[-1.39]=-2,執(zhí)行如下圖所示的程序框圖,則輸出m的值為
( 。
A.$\frac{19}{3}$B.$\frac{53}{8}$C.$\frac{171}{6}$D.$\frac{185}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)M(4,t)在拋物線x2=4y上,則點(diǎn)M到焦點(diǎn)的距離為(  )
A.5B.6C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.空間四邊形OABC中,M,N分別是對(duì)邊OA,BC的中點(diǎn),點(diǎn)G為MN中點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{OG}$可以用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示為(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{6}$$\overrightarrow{c}$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$-$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x∈R,則“x>2”是“x2-3x+2>0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案