如圖,正四棱錐S-ABCD中,AB=2,E是邊BC的中點,動點P在四棱錐的表面上運動,且總保持
PE
AC
=0
,點P的軌跡所圍成的圖形的面積為
2
,若以
BC
的方向為主視方向,則四棱錐S-ABCD的主視圖的面積是
 
考點:向量在幾何中的應用,數(shù)量積判斷兩個平面向量的垂直關系,簡單空間圖形的三視圖
專題:空間位置關系與距離
分析:根據(jù)題意可知點P的軌跡為三角形EFG,其中G、F為中點,根據(jù)中位線定理求出EF、GE、GF,從而求出GH,然后求解正視圖的面積.
解答: 解:由題意知:點P的軌跡為如圖所示的三角形EFG,其中G、F為中點,
∴EF=
1
2
BD=
2

GH=
1
2
SO
,P的軌跡所圍成的圖形的面積為
2
,
1
2
EF•GH
=
2
,
∴GH=2,
四棱錐S-ABCD的主視圖是三角形,底邊邊長為2,高為4,
四棱錐S-ABCD的主視圖的面積S=
1
2
×2×4
=4.
故答案為:4.
點評:本題主要考查了軌跡問題,以及點到面的距離等有關知識,同時考查了空間想象能力,計算推理能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線標準方程為
y2
2
-x2=1,則雙曲線離心率為( 。
A、
2
B、3
C、
6
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組得到的頻率分布表如下:
組號 分組 頻數(shù) 頻率
第一組 [160,165) 5 0.050
第二組 [165,170) a 0.350
第三組 [170,175) 30 b
第四組 [175,180) c 0.200
第五組 [180,185] 10 0.100
合計 100 1.00
(1)為了能選拔出優(yōu)秀的學生,高校決定在筆試成績高的第三、四、五組中用分層抽樣法抽取6名學生進入第二輪面試,試確定a,b,c的值并求第三、四、五組每組各抽取多少名學生進入第二輪面試;
(2)在(1)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官的面試,求第四組中至少有一名學生被A考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中an+1=2an+2n+1(n∈N*),a1=2,
(1)求證:數(shù)列{
an
2n
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{3n-1an}的前n項和為Sn,且Sn=
n
3
,a∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
n
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+1,x≤0
2x-x,x>0
,則f(f(0))的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①“若x2+y2≠0,則x,y不全為零”的否命題;
②“若m>0,則x2+x-m=0有實根”的逆否命題;
③若過定點M(-1,0)且斜率為k的直線與圓x2+4x+y2-5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是0≤k≤
5

④已知二面角α-l-β的平面角的大小是60°,P∈α,Q∈β,R是直線l上的任意一點,過點P與Q作直線l的垂線,垂足分別為P1,Q1,且|PP1|=2,|QQ1|=3,|P1Q1|=5,則|PR|+|QR|的最小值為5
2

以上命題正確的為
 
(把所有正確的命題序號寫在答題卷上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
,
b
是兩個非零向量,則使
a
b
=|
a
||
b
|成立的一個必要非充分條件是( 。
A、
a
=
b
B、
a
b
C、
a
b
(λ>0)
D、
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=2x+
1
2x

(1)判斷f(x)為奇偶性;
(2)證明f(x)函數(shù)在[0,+∞)上單調遞增.

查看答案和解析>>

同步練習冊答案