等差數(shù)列{an}的前n項和為Sn,Sn=n2+a,則常數(shù)a=
 
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由數(shù)列的前n項和求出首項,再求出n≥2時的通項公式,由a1適合n≥2時的通項公式求得a值.
解答: 解:由Sn=n2+a,得
a1=1+a,
當n≥2時,an=Sn-Sn-1=n2+a-(n-1)2-a
=2n-1.
當n=1時,a1=1,
∵{an}是等差數(shù)列,∴1+a=1,a=0.
故答案為:0.
點評:本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列1,a,a2…an-1…的前n項和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在空間四邊形ABCD中,兩條對角線AC,BD互相垂直,且長度分別為4和6,平行于這兩條對角線的平面與邊AB,BC,CD,DA分別相交于點E,F(xiàn),G,H,記四邊形EFGH的面積為y,設(shè)
BE
AB
=x
,則(  )
A、函數(shù)y=f(x)的值域為(0,4]
B、函數(shù)y=f(x)的最大值為8
C、函數(shù)y=f(x)在(0,
2
3
)
上單調(diào)遞減
D、函數(shù)y=f(x)滿足f(x)=f(1-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩直線3x+4y-8=0,6x+8y+11=0間的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為2
3
的正四面體A-BCD,面ACD沿CD旋轉(zhuǎn)至面PCD.
(1)二面角A-CD-P的余弦值為何值時,AP∥平面BCD;
(2)在第一問的前提下,求直線AB與平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sinx•cosx+cos2x-sin2x-1(x∈R)
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[-
π
6
,
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線4x2-y2=64上一點P到它的一個焦點的距離為10,那么它到另一個焦點的距離等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若雙曲線
x2
8
-
y2
m
=1的漸近線方程為y=±2x,則實數(shù)m等于(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記等差數(shù)列{an}得前n項和為Sn,利用倒序相加法的求和辦法,可將Sn表示成首項a1,末項an與項數(shù)的一個關(guān)系式,即Sn=
(a1+an)n
2
;類似地,記等比數(shù)列{bn}的前n項積為Tn,bn>0(n∈N*),類比等差數(shù)列的求和方法,可將Tn表示為首項b1,末項bn與項數(shù)的一個關(guān)系式,即公式Tn=
 

查看答案和解析>>

同步練習冊答案