(1)已知函數(shù)f(x)=rx-xr+(1-r)(x>0),其中r為有理數(shù),且0<r<1,求f(x)的最小值;
(2)試用(1)的結(jié)果證明如下命題:設(shè)a1≥0,a2≥0,b1,b2為正有理數(shù),若b1+b2=1,則≤a1b1+a2b2;
(3)請(qǐng)將(2)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題。注:當(dāng)α為正有理數(shù)時(shí),有求導(dǎo)公式(xα=αxα-1
解:(1)求導(dǎo)函數(shù)可得:f′(x)=r(1-xr-1),
令f′(x)=0,解得x=1;
當(dāng)0<x<1時(shí),f′(x)<0,
所以f(x)在(0,1)上是減函數(shù);
當(dāng)x>1時(shí),f′(x)>0,
所以f(x)在(0,1)上是增函數(shù)
所以f(x)在x=1處取得最小值f(1)=0;
(2)由(1)知,x∈(0,+∞)時(shí),有f(x)≥f(1)=0,即xr≤rx+(1-r)①
若a1,a2中有一個(gè)為0,
≤a1b1+a2b2成立;
若a1,a2均不為0,
∵b1+b2=1,
∴b2=1-b1,
∴①中令,可得≤a1b1+a2b2成立
綜上,對(duì)a1≥0,a2≥0,b1,b2為正有理數(shù),
若b1+b2=1,則≤a1b1+a2b2;② 。
(3)(2)中的命題推廣到一般形式為:設(shè)a1≥0,a2≥0,…,an≥0,b1,b2,…,bn為正有理數(shù),若b1+b2+…+bn=1,則≤a1b1+a2b2+…anbn;③
用數(shù)學(xué)歸納法證明:
(i)當(dāng)n=1時(shí),b1=1,a1≤a1,③成立
(ii)假設(shè)當(dāng)n=k時(shí),③成立,即a1≥0,a2≥0,…,ak≥0,b1,b2,…,bk為正有理數(shù),若
b1+b2+…+bk=1,則≤a1b1+a2b2+…akbk
當(dāng)n=k+1時(shí),a1≥0,a2≥0,…,ak+1≥0,b1,b2,…,bk+1為正有理數(shù),
若b1+b2+…+bk+1=1,
則1-bk+1>0
于是=(=


=
·(1-bk+1

∴當(dāng)n=k+1時(shí),③
成立由(i)(ii)可知,對(duì)一切正整數(shù),推廣的命題成立。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點(diǎn).
①試求直線PQ的斜率kPQ的取值范圍;
②求f(x)圖象上任一點(diǎn)切線的斜率k的范圍;
(2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運(yùn)用這個(gè)結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域?yàn)镈,對(duì)任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①當(dāng)D=(0,1)時(shí),f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
②當(dāng)D=(0,
3
3
)
,函數(shù)f(x)=x3+ax+b時(shí),若f(x)∈MD,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
(2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=
x+3(x≤0)
2x(x>0)
,則f(f(-2))為
2
2
;
(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的取值范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案