11.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式$\frac{x+a-2}{x-a}≤0$的解集為N,若x∈N是x∈M的必要不充分條件,求實數(shù)a的取值范圍.

分析 (1)根據(jù)一元二次不等式的性質(zhì)進行轉(zhuǎn)化求解即可.
(2)根據(jù)充分條件和必要條件的定義轉(zhuǎn)化為集合關(guān)系進行求解即可.

解答 解:(1)由題意知,方程x2-x-m=0在(-1,1)上有解,
即m的取值范圍就是函數(shù)y=x2-x在(-1,1)上的值域,易得$M=\left\{{m|-\frac{1}{4}≤m<2}\right\}$.
(2)因為x∈N是x∈M的必要不充分條件,所以M⊆N且M≠N
若M⊆N,分以下幾種情形研究;
①當(dāng)a=1時,解集N為空集,不滿足題意,
②當(dāng)a>1時,a>2-a,此時集合N={x|2-a≤x<a},
則$\left\{{\begin{array}{l}{2-a≤-\frac{1}{4}}\\{a≥2}\end{array}}\right.$解得$a≥\frac{9}{4}$,且$a=\frac{9}{4}$時,M≠N,故$a≥\frac{9}{4}$滿足題意,
③當(dāng)a<1時,a<2-a,此時集合N={x|a<x≤2-a},
則$\left\{{\begin{array}{l}{a<-\frac{1}{4}}\\{2-a≥2}\end{array}}\right.$,解得$a<-\frac{1}{4}$.
綜上,$a≥\frac{9}{4}$或$a<-\frac{1}{4}$時,x∈N是x∈M的必要不充分條件.

點評 本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的關(guān)系進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow$=(3,-1).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sin2x-6cos2x的值;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,求函數(shù)f(2x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知圓M:(x-1)2+(y-3)2=1,圓N:(x-7)2+(y-5)2=4,點P,Q分別為圓M和圓N上一點,點A是x軸上一點,則|AP|+|AQ|的最小值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在實數(shù)集R中定義一種運算“⊙”,具有性質(zhì):①對任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③對任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)-2c,則函數(shù)f(x)=x⊙$\frac{1}{x}({x>0})$的最小值是( 。
A.2B.3C.$3\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)的定義域是D,若存在常數(shù)m、M,使得m≤f(x)≤M對任意x∈D成立,則稱函數(shù)f(x)是D上的有界函數(shù),其中m稱為函數(shù)f(x)的下界,M稱為函數(shù)f(x)的上界;特別地,若“=”成立,則m稱為函數(shù)f(x)的下確界,M稱為函數(shù)f(x)的上確界.
(Ⅰ)判斷$f(x)=\sqrt{x+1}-\sqrt{x},g(x)={9^x}-2•{3^x}$是否是有界函數(shù)?說明理由;
(Ⅱ)若函數(shù)f(x)=1+a•2x+4x(x∈(-∞,0))是以-3為下界、3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù)$f(x)=\frac{{1-a•{2^x}}}{{1+a•{2^x}}}({x∈[{0,1}],a>0})$,T(a)是f(x)的上確界,求T(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若xlog32≥-1,則函數(shù)f(x)=4x-2x+1-3的最小值為(  )
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:(x-3)(x+1)>0,命題q:x2-2x+1>0,則命題p是命題q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“x<2”是“-3<x<2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實數(shù)a,b滿足$\frac{1}{a}+\frac{1}=\sqrt{ab}$,則ab的最小值為( 。
A.$\sqrt{2}$B.2C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案