已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)對(duì)定義域內(nèi)的任意的恒成立,求實(shí)數(shù)的取值范圍.
(1)時(shí),在減,增,時(shí),在增,減,增,時(shí),在增,時(shí),在增,減,增(2)
解析試題分析:(1)原函數(shù)定義域,求導(dǎo)得
1) 時(shí),在減,增;
2) 時(shí),在增,減,增;
3) 時(shí),在增;
4) 時(shí),在增,減,增。
(2)時(shí),,舍去;
時(shí),在減,增;令,
綜上:
考點(diǎn):函數(shù)單調(diào)性與最值
點(diǎn)評(píng):含有參數(shù)的函數(shù)在求單調(diào)區(qū)間時(shí)要對(duì)參數(shù)分情況討論,一般參數(shù)取不同的范圍對(duì)應(yīng)的單調(diào)區(qū)間是不同的;第二問中不等式恒成立轉(zhuǎn)化為求函數(shù)的最值,此類題目還經(jīng)常采用分離參數(shù)法轉(zhuǎn)化為求關(guān)于x的函數(shù)在某一定義域內(nèi)的最值問題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函 數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)判斷的奇偶性;
(2)確定函數(shù)在上是增函數(shù)還是減函數(shù)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)試判斷函數(shù)的單調(diào)性,并說明理由;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ) 求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ) 若函數(shù)與在區(qū)間上均為增函數(shù),求的取值范圍;
(Ⅲ) 若方程有唯一解,試求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com