如圖所示,已知是橢圓 的左、右焦點,點在橢圓上,線段與圓相切于點,且點為線段的中點,則橢圓的離心率為     .

 

【答案】

【解析】

試題分析:解:記線段PF1的中點為M,橢圓中心為O,連接OM,PF2則有|PF2|=2|OM|,

 

故答案為

考點:橢圓的離心率

點評:本題考查橢圓的離心率,解題時要認真審題,合理地進行等價轉化,充分利用橢圓的性質進行解題

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,已知拋物線y2=2px(p>0)的焦點恰好是橢圓
x2
a2
+
y2
b2
=1
的右焦點F,且兩條曲線的交點連線也過焦點F,則該橢圓的離心率為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•懷化二模)程序框圖如圖所示,已知曲線E的方程為ax2+by2=ab(a,b∈R),若該程序輸出的結果為s,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)的四個頂點構成邊長為5的菱形,原點O到直線AB的距離為
12
5
,其A(0,a),B(-b,0).直線l:x=my+n與橢圓M相交于C,D兩點,且以CD為直徑的圓過橢圓的右頂點P(其中點C,D與點P不重合).
(1)求橢圓M的方程;
(2)試判斷直線l與x軸是否交于定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學 題型:044

如圖所示,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10.橢圓上不同的兩點A(x1,y1)、C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)

求該橢圓的方程

(2)

求弦AC中點的橫坐標

(3)

設弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

同步練習冊答案