已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,,記數(shù)列{cn}的前n項(xiàng)和Tn.若對?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.
【答案】分析:(1)由 5S1,S3,3S2成等差數(shù)列,依題意,可化簡求得q=2,首項(xiàng)a1=2,從而可求得數(shù)列{an}的通項(xiàng)公式;
(2)依題意,可求得cn=-,從而可得Tn=,由≤k(n+4)可求得k≥,利用基本不等式即可求得k的取值范圍.
解答:解:(1)∵5S1,S3,3S2成等差數(shù)列,
∴2S3=5S1+3S2…(1分)
即2(a1+a1q+a1q2)=5a1+3(a1+a1q),
化簡得 2q2-q-6=0…(2分)
解得:q=2或q=-…(3分)
因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),所以q=-不合題意…(4分)
所以{an}的通項(xiàng)公式為:an=2n.…(5分)
(2)由bn=log2an得bn==n…(6分)
∴cn===-…(7分)
∴Tn=1-+-+…+-
=
=…(8分)
≤k(n+4)
∴k≥=…(9分)
=…-(11分)
∵n++5≥2+5=9,當(dāng)且僅當(dāng)n=,即n=2時等號成立------(12分)
 …(13分)
∴k的取值范圍[,+∞).…(14分)
點(diǎn)評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)法求和與基本不等式的綜合應(yīng)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,的等比中項(xiàng)為,則的最小值為(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧朝陽柳城高中高三上第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

 已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧朝陽柳城高中高三上第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;

(2)若的前n項(xiàng)和為Tn,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn

 

查看答案和解析>>

同步練習(xí)冊答案