設(shè)函數(shù)f(x)是定義在(-2,2)上的奇函數(shù),且在(-2,2)上的減函數(shù),若函數(shù)f(x)滿足:f(m-1)+f(2m-1)>0,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性單調(diào)性即可得出.
解答: 解:∵函數(shù)f(x)是定義在(-2,2)上的奇函數(shù),函數(shù)f(x)滿足:f(m-1)+f(2m-1)>0,
∴f(m-1)>-f(2m-1)=f(1-2m),
∵函數(shù)f(x)在(-2,2)上的減函數(shù),
∴-2<m-1<1-2m<2,
解得-
1
2
<m<
2
3

∴m的取值范圍是-
1
2
<m<
2
3

故答案為:-
1
2
<m<
2
3
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查對(duì)臨界值表知P(K2≥3.918)≈0.05,對(duì)此,四名同學(xué)作出了以下的判斷:
p:有95%的把握認(rèn)為“能起到預(yù)防感冒的作用”;
q:如果某人未使用該血清,那么他在一年中有95%的可能性得感冒;
r:這種血清預(yù)防感冒的有效率為95%;
s:這種血清預(yù)防感冒的有效率為5%;
則下列結(jié)論中,錯(cuò)誤結(jié)論的序號(hào)是(  )
A、p∧¬q
B、pVq
C、(p∧q)∧(r∨s)
D、(p∨r)∧(q∨¬s)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x-2x
1
2
;函數(shù)g(x)=ln(x+1)-
2
x
.則:
(1)函數(shù)g(x)的零點(diǎn)個(gè)數(shù)為
 
;
(2)若實(shí)數(shù)a是函數(shù)g(x)的正零點(diǎn),則f(-2)與f(a)的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=
2
,AD=1,點(diǎn)E是棱PB的中點(diǎn).
(1)證明:PD∥平面EAC;
(2)證明:平面ADE⊥平面PBC.
(3)求二面角B-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程3-x=3-x2
 
個(gè)實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-px+q,其中p>0,q>0.
(1)當(dāng)p>q時(shí),證明
f(q)
p
f(p)
q
;
(2)若f(x)=0在區(qū)間,(0,1],(1,2]內(nèi)各有一個(gè)根,求p+q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0.
(1)證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0;
(3)若f(x)≤m2-2pm+1對(duì)所有x∈[-1,1],任意p∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知拋物線拱形的底邊弦長(zhǎng)為a,拱高為b,其面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos(2x+
π
3
)-cos2x
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象向右平移m(m>0)個(gè)單位后,得到的圖象關(guān)于原點(diǎn)對(duì)稱,求實(shí)數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案