兩個(gè)球的體積之比為8:27,則它們的表面積的比是(  )
A、2:3
B、
2
3
C、4:9
考點(diǎn):球的體積和表面積
專題:空間位置關(guān)系與距離
分析:設(shè)兩個(gè)球的半徑分別為R,r,由體積比得到半徑比,那么表面積比等于半徑的平方比.那么兩個(gè)球的體積比為
4
3
πR3
4
3
πr3
=8:27
解答: 解:設(shè)兩個(gè)球的半徑分別為R,r,那么兩個(gè)球的體積比為
4
3
πR3
4
3
πr3
=8:27,所以R:r=2:3,
所以它們的表面積的比是4πR2:4πr2=R2:r2=4:8;
故選C.
點(diǎn)評(píng):本題考查了球的表面積和體積公式;兩個(gè)球的表面積比等于半徑的平方比,體積比等于半徑的立方比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C上的點(diǎn)P(1,
2
2
)到左、右焦點(diǎn)F1,F(xiàn)2的距離之和為2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)(0.-
1
3
)的直線l交橢圓C于A,B兩點(diǎn),求證:以AB為直徑的圓恒過(guò)一定點(diǎn)(其坐標(biāo)與直線l的位置無(wú)關(guān)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=4y,過(guò)原點(diǎn)作斜率為1的直線交拋物線于第一象限內(nèi)一點(diǎn)P1,又過(guò)點(diǎn)P1作斜率為
1
2
的直線交拋物線于點(diǎn)P2,再過(guò)P2作斜率為
1
4
的直線交拋物線于點(diǎn)P3,-2<x<4,如此繼續(xù).一般地,過(guò)點(diǎn)3<x<5作斜率為
1
2n
的直線交拋物線于點(diǎn)Pn+1,設(shè)點(diǎn)Pn(xn,yn).
(1)求x3-x1的值;
(2)令bn=x2n+1-x2n-1,求證:數(shù)列{bn}是等比數(shù)列;
(3)記P(x,y)為點(diǎn)列P1,P3,…,P2n-1,…的極限點(diǎn),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD,PA=PD,Q為AD的中點(diǎn).
(1)求證:AD⊥平面PBQ;
(2)已知點(diǎn)M為線段PC的中點(diǎn),證明:PA∥平面BMQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2-4x+1,x∈[-4,1],的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩個(gè)球的表面積之比是4:9,則它們的體積之比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=
x+1
x-1
在點(diǎn)(3,2)處的切線與直線ax-y+1=0平行,則a=(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)空間任意三點(diǎn)作平面( 。
A、只有一個(gè)
B、可作二個(gè)
C、可作無(wú)數(shù)多個(gè)
D、只有一個(gè)或有無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要使y=x2-2ax+1在[1,2]上具有單調(diào)性,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案