【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個(gè)數(shù)據(jù)模糊.

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

9

10

立定跳遠(yuǎn)

(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩

(單位:次)

63

a

75

60

63

72

70

a-1

b

65

在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則(  )

A. 2號(hào)學(xué)生進(jìn)入30秒跳繩決賽 B. 5號(hào)學(xué)生進(jìn)入30秒跳繩決賽

C. 8號(hào)學(xué)生進(jìn)入30秒跳繩決賽 D. 9號(hào)學(xué)生進(jìn)入30秒跳繩決賽

【答案】B

【解析】由題意得1-86人進(jìn)入30秒跳繩決賽30秒跳繩決賽,所以當(dāng)時(shí),1,3,4,5,6,7號(hào)6人進(jìn)入30秒跳繩決賽30秒跳繩決賽,1去掉A,C; 同理9號(hào)學(xué)生不一定進(jìn)入30秒跳繩決賽,所以選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含個(gè)小正方形.

(1)求出

(2)利用合情推理的“歸納推理思想”歸納出的關(guān)系式,

(3)根據(jù)你得到的關(guān)系式求的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù),).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),是否存在實(shí)數(shù),使得當(dāng)時(shí),不等式恒成立?如果存在,求的取值范圍;如果不存在,請(qǐng)說明理由(其中是自然對(duì)數(shù)的底數(shù),).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鹽化某廠決定采用以下方式對(duì)某塊鹽池進(jìn)行開采:每天開采的量比上一天減少,10天后總量變?yōu)樵瓉淼囊话耄瑸榱司S持生態(tài)平衡,剩余總量至少要保留原來的,已知到今天為止,剩余的總量是原來的

(1)求的值;

(2)到今天為止,工廠已經(jīng)開采了幾天?

(3)今后最多還能再開采多少天?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).現(xiàn)提供的大致圖像的8個(gè)選項(xiàng):

(A)(B)(C)(D)

(E)(F)(G)(H)

Ⅰ)請(qǐng)你作出選擇,你選的是( );

Ⅱ)對(duì)于函數(shù)圖像的判斷,往往只需了解函數(shù)的基本性質(zhì).為了驗(yàn)證你的選擇的正確性,請(qǐng)你解決下列問題:

的定義域是 ;

②就奇偶性而言, ;

③當(dāng)時(shí), 的符號(hào)為正還是負(fù)?并證明你的結(jié)論.

(解決了上述三個(gè)問題,你要調(diào)整你的選項(xiàng),還來得及.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點(diǎn)圖;

2)求y關(guān)于x的線性回歸方程。

3)如果廣告費(fèi)支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

參考公式

用最小二乘法求線性回歸方程系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù).

(1)求點(diǎn)P在直線y=x上的概率.

(2)求點(diǎn)P不在直線y=x+1上的概率.

(3)求點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB的中點(diǎn),且△PDB是正三角形,PA⊥PC.

(1)求證:平面PAC⊥平面ABC.

(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,已知點(diǎn)D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.

(1)求AD的長;

(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案