1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿(mǎn)足條件A⊆C⊆B的集合C 的個(gè)數(shù)為4.

分析 確定集合A,集合B的元素,根據(jù)A⊆C⊆B,在求集合C 的個(gè)數(shù).

解答 解:集合A={x|x2-3x+2=0,x∈R}={1,2}
集合B={x|0<x<5,x∈N}={1,2,3,4}
∵A⊆C
∴集合C中一定含有元素1,2.
又∵C⊆B,
∴集合C中可能含有2,3,4個(gè)元素.即C為{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
故答案為4.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖是正方體的平面展開(kāi)圖,則在這個(gè)正方體中,以下四個(gè)判斷中,正確的序號(hào)是②④.
①BM與ED平行;②CN與BE是異面直線;③CN與BM成60°角;④DM與BN是異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線mx+4y-2=0與直線2x-5y+n=0垂直,垂足為(1,p),則n的值為( 。
A.-12B.-2C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)(2a${\;}^{\frac{3}{2}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是增加的,又f(-3)=0,則x•f(x)<0的解集是( 。
A.{x|-3<x<0,或x>3}B.{x|x<-3,或0<x<3}C.{x|-3<x<0,或0<x<3}D.{x|x<-3,或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)$\frac{f(2x)}{x}$的定義域是(  )
A.(0,4]B.[0,4]C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.實(shí)數(shù)x、y滿(mǎn)足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則z=2x+y的最小值為( 。
A.1B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.空間四邊形ABCD中,AB=CD且AB與CD所成的角為30°,E、F分別為BC、AD的中點(diǎn),則EF與AB所成角的大小為15°或75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)=x(1-a|x|),設(shè)關(guān)于x的不等式f(x)<f(x+a)的解集為A,若[-1,1]⊆A,則實(shí)數(shù)a的取值范圍是$({0,\sqrt{2}-1})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案