精英家教網 > 高中數學 > 題目詳情
已知
sinα-cosα
sinα+cosα
=
1
3
,求cos4
π
3
)-cos4
π
6
).
考點:三角函數的化簡求值
專題:三角函數的求值
分析:根據三角函數的誘導公式進行化簡即可.
解答: 解:cos4
π
3
)-cos4
π
6
)=cos4
π
3
)-sin4
π
3
)=[cos2
π
3
)+sin2
π
3
)][cos2
π
3
)-sin2
π
3
)]
=cos2
π
3
)-sin2
π
3
)=cos(
3
+2α)=2cos2
π
3
)-1.
sinα-cosα
sinα+cosα
=
1
3
,得sinα=2cosα,解得cosα=
5
5
,sinα=
2
5
5
,或cos=-
5
5
,sinα=-
2
5
5

若cosα=
5
5
,sinα=
2
5
5
,則cos(
π
3
)=cos
π
3
cosα-sin
π
3
sinα=
1
2
×
5
5
-
3
2
×
2
5
5
=
5
(1-2
3
)
10
,
若cos=-
5
5
,sinα=-
2
5
5
,則cos(
π
3
)=cos
π
3
cosα-sin
π
3
sinα=-
1
2
×
5
5
-
3
2
×(-
2
5
5
)=-
5
(1-2
3
)
10

則2cos2
π
3
)-1=2(±
5
(1-2
3
)
10
2-1=
1-2
3
5
點評:本題主要考查三角函數值的化簡和求解,利用余弦函數的倍角公式已經兩角和差的余弦公式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

點(x,y)的坐標x,y都是有理數時,該點稱為有理點,在半徑為r,圓心為(a,b)的圓中,若a∈Q,b∈Q,則這個圓上的有理點的數目為(  )
A、最多有一個
B、最多有兩個
C、最多有三個
D、可以有無窮多個

查看答案和解析>>

科目:高中數學 來源: 題型:

某縣為“中學生知識競賽”進行選取性測試,規(guī)定:成績大于或等于90分的右參賽資格,90分以下(不包括90分)的則被淘汰,若現(xiàn)有1000人參加測試,學生成績的頻率分別直方圖如圖:
(1)根據頻率分別直方圖,求獲得參賽資格的人數并估算這1000名學生測試的平均值
(2)若知識競賽分初賽和復賽,在初賽中每人最多有5道選題答題的機會,累計大隊3題或答錯3題即終止,答對3題者方可參加復賽,已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯的概率為
1
9
,求甲在初賽中答題個數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

化簡:sin2242°+tan2(-64°)cot45°•
1
tan2244°
+cos2782°.

查看答案和解析>>

科目:高中數學 來源: 題型:

要得到函數y=cos(2x+
π
3
)的圖象,只需將函數y=cos2x的圖象(  )
A、向左平移
π
3
個單位
B、向左平移
π
6
個單位
C、向右平移
π
6
個單位
D、向右平移
π
3
個單位

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l經過點A(1,2),B(4,2+
3
),則直線l的傾斜角是( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(2,-7),
b
=(-2,-4),若存在實數λ,使得(
a
b
)⊥
b
,則實數λ為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:x2-y2=m2(m>0),直線l過C的一個焦點,且垂直于x軸,直線l與雙曲線C交于A,B兩點,則
|AB|
2m
等于( 。
A、1
B、
2
C、2
D、
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

命題:“對任意的x∈R,x3-x2+1≤0”的否定是( 。
A、不存在x∈R,x3-x2+1≤0
B、存在x0∈R,x03-x02+1>0
C、存在x0∈R,x03-x02+1≤0
D、對任意的x∈R,x3-x2+1>0

查看答案和解析>>

同步練習冊答案