【題目】設直線m與平面α相交但不垂直,則下列說法中,正確的是 ( )
A.在平面α內有且只有一條直線與直線m垂直
B.過直線m有且只有一個平面與平面α垂直
C.與直線m垂直的直線不可能與平面α平行
D.與直線m平行的平面不可能與平面α垂直

【答案】B
【解析】由題意知,m與α斜交,令其在α內的射影為m′,則在α內可作無數(shù)條與m′垂直的直線,它們都與m垂直,A錯;如圖(1),在α外,可作與α內直線l平行的直線,C錯;如圖(2),mβ,α⊥β,可作β的平行平面γ,則m∥γ且γ⊥α,D錯. 所以答案是:B


【考點精析】掌握直線與平面平行的性質和直線與平面垂直的性質是解答本題的根本,需要知道一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行;垂直于同一個平面的兩條直線平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知
(1)求函數(shù)f(x)的最小正周期和最大值,并求出x為何值時,f(x)取得最大值;
(2)求函數(shù)f(x)在[﹣2π,2π]上的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知首項都是1的兩個數(shù)列{an},{bn} 滿足anbn+1﹣an+1bn﹣2an+1an=0.
(1)令 ,求證數(shù)列{cn}為等差數(shù)列;
(2)若 ,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人射擊一次命中7~10環(huán)的概率如下表

命中環(huán)數(shù)

7

8

9

10

命中概率

0.16

0.19

0.28

0.24

計算這名射手在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長都相等的四面體PABC中,DEF分別是AB、BC、CA的中點,則下面四個結論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長為a的正方形,側棱PDa , PAPC a

(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(m2m-1)x-5m-3m為何值時,f(x):
(1)是冪函數(shù);
(2)是正比例函數(shù);
(3)是反比例函數(shù);
(4)是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知θ∈( ,π), + =2 ,則cos(2θ+ )的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓c關于y軸對稱,經(jīng)過拋物線y2=4x的焦點,且被直線y=x分成兩段弧長之比為1:2,求圓c的方程.

查看答案和解析>>

同步練習冊答案