【題目】已知函數(shù),若對(duì)任意,總存在,使,則實(shí)數(shù)a的取值范圍是( 。
A.或B.C.D.
【答案】A
【解析】
求出兩個(gè)函數(shù)的值域,結(jié)合對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),等價(jià)為f(x)的值域是g(x)值域的子集,進(jìn)行轉(zhuǎn)化求解即可.
對(duì)任意x∈[1,+∞),則f(x)=2x﹣1≥20=1,即函數(shù)f(x1)的值域?yàn)?/span>[1,+∞),
若對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),
設(shè)函數(shù)g(x)的值域?yàn)?/span>A,
則滿(mǎn)足[1,+∞)A,即可,
當(dāng)x<0時(shí),函數(shù)g(x)=x2+2a為減函數(shù),則此時(shí)g(x)>2a,
當(dāng)x≥0時(shí),g(x)=acosx+3∈[3﹣|a|,3+|a|],
①當(dāng)2a<1時(shí),即a時(shí),滿(mǎn)足條件[1,+∞)A,
②當(dāng)a時(shí),此時(shí)2a≥1,要使[1,+∞)A成立,
則此時(shí)當(dāng)x≥0時(shí),g(x)=acosx+3∈[3﹣a,3+a],
此時(shí)滿(mǎn)足,即,得2≤a≤3,
綜上a或2≤a≤3,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線”, 《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(2)預(yù)測(cè)該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: , .
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,.在梯形中,,且,,平面.
(Ⅰ)求證:.
(II)求四棱錐與三棱錐體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)在軸的負(fù)半軸上.若(為原點(diǎn)),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為,并且,數(shù)列滿(mǎn)足:,,記數(shù)列的前n項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和為;
(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和為;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱(chēng)函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對(duì)于命題:
①函數(shù)f(x)=-x+是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( 。
A. 和均為真命題 B. 為真命題,為假命題
C. 為假命題,為真命題 D. 和均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿(mǎn)足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿(mǎn)足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{bn}的通項(xiàng)公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com