設(shè)為數(shù)列的前項(xiàng)和,對任意的N,都有為常數(shù),且
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比函數(shù)關(guān)系為,數(shù)列滿足,點(diǎn)落在 上,,N,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和,使恒成立時(shí),求的最小值.[

(1)證明過程詳見試題分析; (2)數(shù)列的通項(xiàng)公式為;
(3),的最小值為-6.

解析試題分析:(1)按照等比數(shù)列的定義證明數(shù)列是等比數(shù)列;
(2)由(1)知函數(shù)關(guān)系為,∴是首項(xiàng)為,公差為1的等差數(shù)列,通項(xiàng)公式可求;
(3)先用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和,即,化簡得恒成立,由單調(diào)性知當(dāng)時(shí),右邊最大,所以,的最小值為-6.
(1)證明:當(dāng)時(shí),,解得.     1分
當(dāng)時(shí),.                   2分

為常數(shù),且,∴.               3分
∴數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.               4分
(2)解:由(1)得,.            5分

,即
是首項(xiàng)為,公差為1的等差數(shù)列.                  7分
,即).            8分
(3)解:由(2)知,則.          9分
所以,
,       ①
,        ②
②-①得,  

,化簡得恒成立,由單調(diào)性知當(dāng)時(shí),右邊最大,所以,的最小值為-6.                            14分
考點(diǎn):數(shù)列綜合應(yīng)用、函數(shù)與方程思想、恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知等比數(shù)列滿足:,若存在兩項(xiàng),使得 
的最小值為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足a1+a2+a3=14,且a2+1是a1,a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog2an,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若存在n∈N*,使得Sn+1﹣2≤8n3λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正數(shù)數(shù)列為等比數(shù)列,,記.
(1)求;
(2)證明: 對任意的,有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右頂點(diǎn)分別是,左、右焦點(diǎn)分別是.若,成等比數(shù)列,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩容器中分別盛有兩種濃度的某種溶液,從甲容器中取出溶液,將其倒入乙容器中攪勻,再從乙容器中取出溶液,將其倒入甲容器中攪勻,這稱為是一次調(diào)和,已知第一次調(diào)和后,甲、乙兩種溶液的濃度分別記為:,,第次調(diào)和后的甲、乙兩種溶液的濃度分別記為:、.
(1)請用、分別表示;
(2)問經(jīng)過多少次調(diào)和后,甲乙兩容器中溶液的濃度之差小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

個(gè)實(shí)數(shù)組成的列數(shù)表中,先將第一行的所有空格依次填上,,再將首項(xiàng)為公比為的數(shù)列依次填入第一列的空格內(nèi),然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)律填寫其它空格

 
第1列
第2列
第3列
第4列
 

第1行




 

第2行

 
 
 
 
 
第3行

 
 
 
 
 
第4行

 
 
 
 
 
 

 
 
 
 
 
 


 
 
 
 
 
(1)設(shè)第2行的數(shù)依次為.試用表示的值;
(2)設(shè)第3行的數(shù)依次為,記為數(shù)列.
①求數(shù)列的通項(xiàng)
②能否找到的值使數(shù)列的前項(xiàng))成等比數(shù)列?若能找到,的值是多少?若不能找到,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)列為等比數(shù)列,且,設(shè)等差數(shù)列的前項(xiàng)和為,若,則         

查看答案和解析>>

同步練習(xí)冊答案