12.函數(shù)y=x2+sinx的導函數(shù)y′=2x+cosx.

分析 根據(jù)導數(shù)的運算法則基本導數(shù)公式計算即可.

解答 解:y′=(x2+sinx)=(x2)′+(sinx)′=2x+cosx,
故答案為:2x+cosx

點評 本題考查了導數(shù)的運算法則,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.i是虛數(shù)單位,復數(shù)z=${({\frac{3-i}{1+i}})^2}$,則復數(shù)z的共軛復數(shù)表示的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知tanα=2,tanβ=3,則tan(α+β)=( 。
A.1B.-1C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計表如表:
日最高氣溫t(單位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天數(shù)612XY
由于工作疏忽,統(tǒng)計表被墨水污染,Y和X數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高氣溫高于32℃稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測是否有95%的把握認為本地區(qū)的“高溫天氣”與冷飲“旺銷”有關(guān)?說明理由.
高溫天氣非高溫天氣合計
旺銷22224        
不旺銷426
合計62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知一曲線C是與兩個定點O(0,0),A(3,0)的距離比為$\frac{1}{2}$的點的軌跡.
(1)求曲線C的方程,并指出曲線類型;
(2)過(-2,2)的直線l與曲線C相交于M,N,且|MN|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.命題:“?x>0,x2-x≥0”的否定形式是(  )
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求圓心在l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為$2\sqrt{7}$的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,則a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.化簡$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•cos(-π-α)}$.

查看答案和解析>>

同步練習冊答案