【題目】已知函數(shù).

1求函數(shù)的單調(diào)增區(qū)間;

2設(shè)對任意成立,求實數(shù)的取值范圍.

【答案】12.

【解析】試題分析:1依題意, ,從而易得函數(shù)的單調(diào)增區(qū)間;

(2)結(jié)合函數(shù)的性質(zhì)分類討論a1a1兩種情況即可求得實數(shù)a的取值范圍.

試題解析:

1依題意 ,

,解得,故函數(shù)的單調(diào)增區(qū)間為;

2當(dāng)時,對任意的都有;

當(dāng)時,對任意的,都有;

成立,或恒成立.

,設(shè)函數(shù).

恒成立,恒成立, ,

當(dāng)時,,恒成立,

所以上遞增, 上恒成立,符合題意.

當(dāng)時,令,,

上遞減,所以

設(shè)函數(shù),

恒成立,

上遞增, 恒成立,

上遞增 恒成立.

,不合題意.

綜上①②,故實數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別是,點在橢圓上, 是等邊三角形.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)點在橢圓上,線段與線段交于點,若的面積之比為,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為的正方形(及其內(nèi)部)繞旋轉(zhuǎn)一周形成圓柱,如圖, 長為 長為,其中在平面的同側(cè).

(1)求三棱錐的體積;

(2)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線的斜率之積為 .

(Ⅰ)求頂點的軌跡方程;

(Ⅱ)設(shè)動直線 ,點關(guān)于直線的對稱點為,且點在曲線上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形, 交于點, 底面,點中點, .

(1)求直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為正方形, 上面 的中點.

(1)求證: ;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān), 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:

溫度x/C

21

23

24

27

29

32

產(chǎn)卵數(shù)y/

6

11

20

27

57

77

經(jīng)計算得: , , , ,

,線性回歸模型的殘差平方和,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.

()若用線性回歸模型,求y關(guān)于x的回歸方程=x+(精確到0.1);

()若用非線性回歸模型求得y關(guān)于x的回歸方程為=0.06e0.2303x,且相關(guān)指數(shù)R2=0.9522.

( i )試與()中的回歸模型相比,用R2說明哪種模型的擬合效果更好.

( ii )用擬合效果好的模型預(yù)測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=x+的斜率和截距的最小二乘估計為

=;相關(guān)指數(shù)R2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該著作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,如圖所示的程序框圖的算法思路源于該著作中的“李白沽酒”問題,執(zhí)行該程序框圖,若輸出的的值為0,則輸入的的值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標(biāo)分別為,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案