(1)如果函數(shù)y=x+在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),求實常數(shù)b的值;
(2)設常數(shù)c∈[1,4],求函數(shù)f(x)=x+(1≤x≤2)的最大值和最小值;
(3)當n是正整數(shù)時,研究函數(shù)g(x)=xn-(c>0)的單調(diào)性,并說明理由.
解(1) 由已知得=4, ∴b=4.
(2) ∵c∈[1,4], ∴∈[1,2],
于是,當x=時, 函數(shù)f(x)=x+取得最小值2.
f(1)-f(2)=,
當1≤c≤2時, 函數(shù)f(x)的最大值是f(2)=2+;
當2≤c≤4時, 函數(shù)f(x)的最大值是f(1)=1+c.
(3)設0<x1<x2,g(x2)-g(x1)=.
當<x1<x2時, g(x2)>g(x1), 函數(shù)g(x)在[,+∞)上是增函數(shù);
當0<x1<x2<時, g(x2)>g(x1), 函數(shù)g(x)在(0, ]上是減函數(shù).
當n是奇數(shù)時,g(x)是奇函數(shù),
函數(shù)g(x) 在(-∞,-]上是增函數(shù), 在[-,0)上是減函數(shù).
當n是偶數(shù)時, g(x)是偶函數(shù),
函數(shù)g(x)在(-∞,-]上是減函數(shù), 在[-,0)上是增函數(shù).
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學文科試題 題型:013
已知點P在半徑為1的半圓周上沿著A→P→B路徑運動,設弧的長度為x,弓形面積為f(x)(如圖所示的陰影部分),則關于函數(shù)y=f(x)的有如下結論:
①函數(shù)y=f(x)的定義域和值域都是[0,π];
②如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是周期函數(shù);
③如果函數(shù)y=f(x)的定義域R,則函數(shù)y=f(x)是奇函數(shù);
④函數(shù)y=f(x)在區(qū)間[0,π]上是單調(diào)遞增函數(shù).
以上結論的正確個數(shù)是
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學 來源:2012年湖北省武漢市武昌區(qū)高三五月調(diào)考數(shù)學試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com