垂直于y軸的直線與y軸及拋物線y2=2(x1)分別交于點(diǎn)A和點(diǎn)P,點(diǎn)By軸上且點(diǎn)A的比為12,求線段PB的中點(diǎn)Q的軌跡方程.

 

答案:
解析:

參數(shù)法:設(shè)A(0,t),B(03t),則P(,t),設(shè)Q(x,y),則有

   

    消去t,得

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(-
1
4
,0)
,直線l:x=
1
4
,點(diǎn)B是直線l上的動(dòng)點(diǎn),若過B垂直于y軸的直線與線段BF的垂直平分線交于點(diǎn)M,則點(diǎn)M所在曲線是(  )
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,F(xiàn)(
2
,0)
為其右焦點(diǎn),過F垂直于x軸的直線與橢圓相交所得的弦長(zhǎng)為2.
(1)求橢圓C的方程;
(2)直線l:y=kx+m(km≠0)與橢圓C交于A、B兩點(diǎn),若線段AB中點(diǎn)在直線x+2y=0上,求△FAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)上有一點(diǎn)Q(2,y0)到焦點(diǎn)F的距離為
52

(Ⅰ)求p及y0的值;
(Ⅱ)如圖,設(shè)直線y=kx+b與拋物線交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=2,過弦AB的中點(diǎn)M作垂直于y軸的直線與拋物線交于點(diǎn)D,連接AD,BD.試判斷△ABD的面積是否為定值?若是,求出定值;否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

垂直于y軸的直線與y軸及拋物線y2=2(x1)分別交于點(diǎn)A和點(diǎn)P,點(diǎn)By軸上且點(diǎn)A的比為12,求線段PB的中點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案