設(shè)是兩個數(shù)列,點(diǎn)為直角坐標(biāo)平面上的點(diǎn),若對三點(diǎn)共線。

⑴求數(shù)列的通項(xiàng)公式;

⑵若數(shù)列滿足:,其中是第三項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式。

解:⑴ ----------------------------------------------2分

三點(diǎn)共線,

------------------------------------------------------------------------------1分

⑵由題意

由題意得

---------------------------------2分

當(dāng)時(shí),

-----------------1分

-------------------------------------------------------1分

當(dāng)時(shí),也適合上式,------------------------1分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}{bn}是兩個數(shù)列,點(diǎn)M(1,2),An(2,an)Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點(diǎn).
(Ⅰ)對n∈N*,若三點(diǎn)M,An,Bn共線,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求出此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè){an}{bn}是兩個數(shù)列,點(diǎn)數(shù)學(xué)公式為直角坐標(biāo)平面上的點(diǎn).
(Ⅰ)對n∈N*,若三點(diǎn)M,An,Bn共線,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:數(shù)學(xué)公式,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求出此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省新課程高考沖刺全真模擬數(shù)學(xué)試卷6(文科)(解析版) 題型:解答題

設(shè){an}{bn}是兩個數(shù)列,點(diǎn)為直角坐標(biāo)平面上的點(diǎn).
(Ⅰ)對n∈N*,若三點(diǎn)M,An,Bn共線,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求出此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市松江區(qū)高考模擬考試(理) 題型:解答題

 (本題滿分16分,其中第(1)小題4分,第(2)小題8分,第(3)小題4分)

設(shè)是兩個數(shù)列,為直角坐標(biāo)平面上的點(diǎn).對若三點(diǎn)共線,

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列{}滿足:,其中是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列(1,在同一條直線上;

(3)記數(shù)列、{}的前項(xiàng)和分別為,對任意自然數(shù),是否總存在與相關(guān)的自然數(shù),使得?若存在,求出的關(guān)系,若不存在,請說明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案