【題目】是定義在上的奇函數(shù),對,均有,已知當時, ,則下列結論正確的是( )

A. 的圖象關于對稱 B. 有最大值1

C. 上有5個零點 D. 時,

【答案】C

【解析】∵f(x)是定義在R上的奇函數(shù),對x∈R,均有f(x+2)=f(x),故函數(shù)的周期為2,則f(x)的圖象關于(1,0)點對稱,故A錯誤;f(x)∈(-1,1),無最大值,故B錯誤;整數(shù)均為函數(shù)的零點,故f(x)在[-1,3]上有5個零點,故C正確;當x∈[2,3)時,x-2∈[0,1),則f(x)=f(x-2)=2x-2-1,當x=3時,f(x)=0,故D錯誤;

故選C.

點睛:本題是函數(shù)性質的綜合應用,已知對稱中心,周期能推出另一個對稱中心,根據(jù)某區(qū)間上的解析式,結合周期性,對稱性可以得到一個周期中的函數(shù)圖象,從而關于最值,零點等問題都可以解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格.某校有800 名學生參加了初賽,所有學生的成績均在區(qū)間內,其頻率分布直方圖如圖所示

(Ⅰ)求初賽分數(shù)在區(qū)間內的頻率;

(Ⅱ)求獲得復賽資格的人數(shù);

(Ⅲ)據(jù)此直方圖估算學生初賽成績的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中:

①“若,則”的否命題是“若,則”;

②“”是“”的必要非充分條件;

③“”是“”的充分非必要條件;

④“”是“”的充要條件.

其中正確的序號為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)若曲線處的切線方程為,求實數(shù)的值;

2)設,若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱, 平面, , .

1)證明:平面平面

2)若四棱柱的體積為,求該三棱柱的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下三個關于圓錐曲線的命題中:

①設為兩個定點,為非零常數(shù),若,則動點的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點;

④已知拋物線,以過焦點的一條弦為直徑作圓,則此圓與準線相切,其中真命題為__________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(限定).

(1)寫出曲線的極坐標方程,并求交點的極坐標;

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

同步練習冊答案