數(shù)列{an}中,a1=1,Sn表示前n項(xiàng)和,且Sn,Sn+1,2S1成等差數(shù)列,通過(guò)計(jì)算S1,S2,S3,猜想當(dāng)n≥1時(shí),Sn=( 。
分析:利用等差數(shù)列求出Sn,Sn+1的關(guān)系,然后求出S2,S3,的值,化簡(jiǎn)表達(dá)式的分子與分母,然后猜想結(jié)果.
解答:解:由題意可知2Sn+1=2S1+Sn.當(dāng)n=1時(shí),S2=
3
2
,
n=2時(shí),2S3=2S1+S2=
7
2
,S3=
7
4

S1,S2,S3,為:1=
2-1
20
3
2
=
22-1
22-1
、
7
4
=
23-1
23-1

猜想當(dāng)n≥1時(shí),Sn=
2n-1
2n-1

故選B.
點(diǎn)評(píng):本題考查數(shù)列前n項(xiàng)和求法,猜想的一般方法,注意規(guī)律方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于( 。
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=-60,an+1-an=3,(1)求數(shù)列{an}的通項(xiàng)公式an和前n項(xiàng)和Sn(2)問(wèn)數(shù)列{an}的前幾項(xiàng)和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,對(duì)?n∈N*an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)如果一個(gè)數(shù)列{an}對(duì)任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項(xiàng)和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習(xí)冊(cè)答案