12.設(shè)集合A={0,1,2,3},B={1,2,3},則A∩B=(  )
A.{0,1,2,3}B.{0,3}C.{1,2,3}D.

分析 集合A與集合B都是含有三個(gè)元素的集合,且有一個(gè)公共元素1和2,所以A∩B可求.

解答 解:因?yàn)榧螦={0,1,2,3},B={1,2,3},所以A∩B={1,2,3}.
故選:C.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,兩個(gè)集合的交集是有兩個(gè)集合的公共元素組成的集合,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在直角坐標(biāo)系xOy中,F(xiàn)為拋物線C:y2=2px(p>0)的焦點(diǎn),M為拋物線C上一點(diǎn),若|MF|=2p,S△MOF=4$\sqrt{3}$,則p的值為(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直角梯形ABEF中,BE∥AF,∠FAB=90°,AF=$\frac{3}{2}$BE=3AB=3,C,D分別是邊BE,AF上的點(diǎn)(不是端點(diǎn)),且CD⊥AF,如圖1所示;現(xiàn)沿CD把直角梯形ABEF折成一個(gè)120°的二面角,連接部分線段后圍成一個(gè)空間幾何體,如圖2所示.
(1)求證:BE∥平面ADF;
(2)當(dāng)四棱錐F-ABCD體積最大時(shí),求平面ADF與平面BEF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足a1=$\frac{1}{3}$,an=(-1)n•2an-1(n≥2),寫出它的前五項(xiàng),并歸納出通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,A=$\frac{π}{4}$,cosB=$\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若c=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB=8,AC=6,以AC和BC為直徑作半圓,圓心分別為O1,O2,兩圓的公切線MN與AB的延長(zhǎng)線交于D,求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.D是△ABC邊AB上的中點(diǎn),記$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{BA}$=$\overrightarrow b$,則向量$\overrightarrow{DC}$=( 。
A.$-\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$-\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\overrightarrow a-\frac{1}{2}\overrightarrow b$D.$\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A、B兩地之間有6條網(wǎng)線并聯(lián),這6條網(wǎng)線能通過的信息量分別為1,1,2,2,3,3.現(xiàn)從中任取3條網(wǎng)線,設(shè)可通過的信息量為X,當(dāng)X≥6時(shí),可保證線路信息暢通(通過的信息量X為三條網(wǎng)線上信息量之和),則線路信息暢通的概率為( 。
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在復(fù)平面內(nèi),復(fù)數(shù)z1,z2對(duì)應(yīng)的向量分別為$\overrightarrow{OA}$,$\overrightarrow{OB}$,則復(fù)數(shù)$\overline{z_1}$+2z2=( 。?
A.-2+iB.-2+3iC.1+2iD.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案