【題目】設(shè)橢圓的左右焦點(diǎn)分別為、,橢圓的離心率為,為橢圓上任意一點(diǎn),的最大面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過的直線與橢圓交于、兩點(diǎn),連接、,若的內(nèi)切圓面積為,則求直線方程.

【答案】12

【解析】

1面積最大值為,由離心率,結(jié)合,即可求出橢圓方程;

2)設(shè),由已知可得內(nèi)切圓的半徑,以及周長,求出的面積,且等于,求出,設(shè)直線方程,與橢圓方程聯(lián)立,消去,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,即可求解.

解:(1)當(dāng)為上下頂點(diǎn)時(shí),的面積最大,

所以.又∵,∴,

解得,,,橢圓方程為

2)∵內(nèi)切圓的面積為,∴內(nèi)切圓的半徑

,∴

設(shè),則聯(lián)立直線方程與橢圓方程,

,

,,

,

,則

∴直線方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)內(nèi)恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請說明點(diǎn)N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,四邊形

為矩形,平面平面,.

I)求證:平面;

II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為

試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的英語單詞背誦比賽中,5位評委對甲、乙兩名同學(xué)的評分如莖葉圖所示(分?jǐn)?shù)為整數(shù),且滿分100分),若甲同學(xué)所得評分的中位數(shù)為87,乙同學(xué)所得評分的唯一眾數(shù)為86,則甲同學(xué)所得評分的平均數(shù)不小于乙同學(xué)所得評分的平均數(shù)的概率為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次公里的自行車個(gè)人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:

(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);

(2)若從總體中選取一個(gè)樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個(gè)具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有臺大型機(jī)器,在個(gè)月中,臺機(jī)器至多出現(xiàn)次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺機(jī)器的能力,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)的中點(diǎn),作,交于點(diǎn).

1)求證:平面;

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案