如果對于x∈R,不等式|x+1|≥kx恒成立,則k的取值范圍是
[0,1]
[0,1]
分析:由題意得要使不等式|x+1|≥kx恒成立,只要使得當(dāng)x取相同的值時(shí),y=|x+1|的圖象不能在y=kx的圖象的下方,畫出函數(shù)y=|x+1|與y=kx的圖象,如圖所示:可得直線y=kx的斜率只能在0≤k≤1.
解答:解:∵不等式|x+1|≥kx恒成立,
∴y=|x+1|的圖象不能在 y=kx 的圖象的下方,
如圖所示畫出兩個(gè)函數(shù)y=|x+1|與y=kx的圖象,
根據(jù)兩條直線之間的關(guān)系,得到y(tǒng)=kx的圖象只能在與x軸重合與y=x平行之間,
∴0≤k≤1,
故答案為:[0,1]
點(diǎn)評:本題考查函數(shù)的恒成立問題,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,本題解題的關(guān)鍵是構(gòu)造新函數(shù),在同一個(gè)坐標(biāo)系中畫出函數(shù)的圖象,結(jié)合圖象看出要求的直線的斜率的范圍,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對于任意大于1的不等實(shí)數(shù)a,b,總有
f(a)-f(b)
a-b
>0
成立.
(1)f(x)的圖象是否有對稱軸?如果有,寫出對稱軸方程.并說明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè)g(x)=
1
f(x)
+
1
2-x
,如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市東臺市安豐中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對于任意大于1的不等實(shí)數(shù)a,b,總有成立.
(1)f(x)的圖象是否有對稱軸?如果有,寫出對稱軸方程.并說明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè),如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市東臺市安豐中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對于任意大于1的不等實(shí)數(shù)a,b,總有成立.
(1)f(x)的圖象是否有對稱軸?如果有,寫出對稱軸方程.并說明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè),如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省鹽城市濱海中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)定義域?yàn)镽且同時(shí)滿足:①f(x)圖象左移1個(gè)單位后所得函數(shù)為偶函數(shù);②對于任意大于1的不等實(shí)數(shù)a,b,總有成立.
(1)f(x)的圖象是否有對稱軸?如果有,寫出對稱軸方程.并說明在區(qū)間(-∞,1)上f(x)的單調(diào)性;
(2)設(shè),如果f(0)=1,判斷g(x)=0是否有負(fù)實(shí)根并說明理由;
(3)如果x1>0,x2<0且x1+x2+2<0,比較f(-x1)與f(-x2)的大小并簡述理由.

查看答案和解析>>

同步練習(xí)冊答案