精英家教網(wǎng)如圖,在正方體ABCD-A1B1C1D1中,M、N、P分別為棱AB、BC、DD1的中點(diǎn).
(1)求二面角B1-MN-B的正切值;
(2)證明:PB⊥平面B1MN;
(3)畫出該正方體表面展開圖,使其滿足“有4個(gè)正方形連成一個(gè)長方形”的條件.
分析:(1)要求二面角B1-MN-B的正切值,我們要先找出二面角的平面角,再構(gòu)造三角形,解三角形求出其正切值.
(2)要證明PB⊥平面B1MN,我們要在平面內(nèi)找到兩條與PB垂直的相交直線,分析題意可知B1M,B1N滿足要求,進(jìn)而可以轉(zhuǎn)化為證明線線垂直.
(3)由正方體12種展開圖,選其中“1-4-1”的情況,再標(biāo)識(shí)出P點(diǎn)即可.
解答:解:(1)連接BD交MN于F,則BF⊥MN,連接B1F.∵B1B⊥平面ABCD,
∴B1B⊥MN.
又∵BD⊥MN
∴MN⊥平面B1BF
∴MN⊥B1F
∴∠B1FB為二面角B1-MN-B的平面角.
在Rt△B1BF中,B1B=1,BF=
2
4

∴tan∠B1FB=2
2

(2)過點(diǎn)P作PE⊥AA1于E,
則PE⊥平面ABB1A1,
連接BE.由平面幾何知識(shí)知,B1M⊥BE.
∴PB⊥B1M
同理,PB⊥B1N
又∵B1M∩B1N=B1
∴PB⊥平面B1MN.
(3)符合條件的正方體表面展開圖可以是以下6種情況之一.
精英家教網(wǎng)
點(diǎn)評(píng):線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說,根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來.本題也可以用空間向量來解決,其步驟是:建立空間直角坐系?明確相關(guān)點(diǎn)的坐標(biāo)?明確相關(guān)向量的坐標(biāo)?通過空間向量的坐標(biāo)運(yùn)算求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個(gè)正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案