17.下列說法中正確的個(gè)數(shù)是( 。
(1)從一批產(chǎn)品取出三件產(chǎn)品,設(shè)事件A=“三件產(chǎn)品全是次品”,事件B=“三件產(chǎn)品全是正品”,事件C=“三件產(chǎn)品不全是次品”,A,B,C中任何兩個(gè)均互斥;
(2)已知a,b都是實(shí)數(shù),那么“$\sqrt{a}$>$\sqrt$”是“l(fā)na>lnb”的充要條件;
(3)若命題p:?x∈(0,$\frac{π}{2}$),x-sinx<0,則¬p:?x∈(0,$\frac{π}{2}$),x-sinx≥0.
A.0B.1C.2D.3

分析 由互斥事件的概念判斷(1);舉例說明(2)錯(cuò)誤;寫出全程命題的否定判斷(3).

解答 解:(1)事件C=“三件產(chǎn)品不全是次品”,它包括一件次品,兩件次品,三件全是正品三個(gè)事件,B?C,故B,C不互斥,(1)錯(cuò)誤;
(2)當(dāng)a=1,b=0時(shí),有$\sqrt{a}$>$\sqrt$此時(shí)lnb無意義,故(2)錯(cuò)誤;
(3)若命題p:?x∈(0,$\frac{π}{2}$),x-sinx<0,則¬p:?x∈(0,$\frac{π}{2}$),x-sinx≥0,故(3)正確.
∴正確的說法只有(3).
故選:B.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查互斥事件的概念,考查充分必要條件的判定方法,注意全稱命題的否定的格式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l1:3x+2y-1=0,直線l2:5x+2y+1=0,直線l3:3x-5y+6=0,直線L經(jīng)過直線l1與直線l2的交點(diǎn),且垂直于直線l3,求直線L的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l1:2x+3my-m+2=0和l2:mx+6y-4=0,若l1∥l2,則l1與l2之間的距離為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow a=({1,3})$,$\overrightarrow b=({-2,m})$,若$\overrightarrow a$與$\overrightarrow a+2\overrightarrow b$平行,則m的值為(  )
A.1B.-1C.-2D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“若x=2,則x2-3x+2=0”的否命題是( 。
A.若x≠2,則x2-3x+2≠0B.若x2-3x+2=0,則x=2
C.若x2-3x+2≠0,則x≠2D.若x=2,則x2-3x+2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對任意的實(shí)數(shù)x都有f(x)=2x2-f(-x),當(dāng)x∈(-∞,0)時(shí),f′(x)+1<2x.若f(m+2)≤f(-m)+4m+4,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow a=(1,1,0)$,$\overrightarrow b=(-1,0,2)$,且$k\overrightarrow a+\overrightarrow b$與$\overrightarrow a$互相垂直,則k=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.點(diǎn)(x,y)滿足$\left\{\begin{array}{l}0≤x≤4\\ 0≤y≤4\\ x,y∈N\end{array}\right.$,則點(diǎn)A落在區(qū)域C:x2+y2-4x-4y+7≤0內(nèi)的概率為( 。
A.$\frac{π}{16}$B.$\frac{5}{16}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在棱長為1的正方體中,P是側(cè)棱CC1上的一點(diǎn),CP=m
(1)試確定m,使直線AP與平面BDD1B1所成角的正切值為$4\sqrt{2}$;
(2)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案