設函數f(x)=2x+a•2-x-1(a為實數).
(1)若a<0,用函數單調性定義證明:y=f(x)在(-∞,+∞)上是增函數;
(2)若a=0,y=g(x)的圖象與y=f(x)的圖象關于直線y=x對稱,求函數y=g(x)的解析式.
分析:(1)根據題意,對任意實數x1<x2,f(x1)-f(x2)與0的關系,化簡可得f(x1)-f(x2)<0,則為增函數;
(2)當a=0,y=f(x)=2x-1,因y=g(x)的圖象與y=f(x)的圖象關于直線y=x對稱,可得到y=g(x)的解析式.
解答:解:(1)設任意實數x
1<x
2,則
f(x1)-f(x2)=(2x1+a•2-x1-1)-(2x2+a•2-x2-1)=
(2x1-2x2)+a(2-x1-2-x2)=
(2x1-2x2)•∵
x1<x2,∴
2x1<2x2,∴
2x1-2x2<0;
∵
a<0,∴
2x1+x2-a>0.
又
2x1+x2>0,所以f(x
1)-f(x
2)<0,所以f(x)是增函數.
(2)當a=0時,y=f(x)=2
x-1,所以2
x=y+1,所以x=log
2(y+1),y=g(x)=log
2(x+1).
點評:此題主要考查函數當調性定義的證明方法及相關計算.