13.已知向$\overrightarrow{a}$=(1,n),$\overrightarrow$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow$,則|$\overrightarrow{a}$|=( 。
A.1B.$\frac{\sqrt{6}}{2}$C.4D.$\sqrt{2}$

分析 利用兩個(gè)向量垂直的性質(zhì),求出n,再根據(jù)向量的模的定義求得|$\overrightarrow{a}$|

解答 解:$\overrightarrow{a}$=(1,n),$\overrightarrow$=(-1,n),$\overrightarrow{a}$垂直于$\overrightarrow$,
∴-1+n2=0,
∴n2=1,
∴|$\overrightarrow{a}$|=$\sqrt{1+{n}^{2}}$=$\sqrt{2}$,
故選:D

點(diǎn)評(píng) 本題主要考查兩個(gè)向量垂直的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,求向量的模,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的通項(xiàng)公式為${a_n}={(-1)^{n+1}}•{n^2}$,其前n項(xiàng)和為Sn,
(1)求S1,S2,S3,S4,并猜想Sn的值;
(2)用數(shù)學(xué)歸納法證明(1)中所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,對(duì)角線AC、BD相交于O,將菱形ABCD沿對(duì)角線AC折起,使BD=3$\sqrt{2}$,得到三棱錐B-ACD.

(1)若M是BC的中點(diǎn),求證:直線OM∥平面ABD;
(2)求三棱錐B-ACD的體積;
(3)若N是BD上的動(dòng)點(diǎn),求當(dāng)直線CN與平面OBD所成角最大時(shí),二面角N-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在銳角△ABC中,已知$AC=\sqrt{2},AB=\frac{{\sqrt{6}+\sqrt{2}}}{2},A=60°$.
(Ⅰ)求BC邊的長(zhǎng);
(Ⅱ)分別用正弦定理、余弦定理求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某商人如果將進(jìn)貨單價(jià)為8元的商品按每件10元出售時(shí),每天可銷售100件,現(xiàn)他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤(rùn),已知這種商品每件銷售價(jià)提高1元,銷售量就減少5件,問他將銷售價(jià)每件定為多少元時(shí),才能使得每天所賺的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知λ,μ為常數(shù),且為正整數(shù),λ為質(zhì)數(shù)且大于2,無(wú)窮數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,對(duì)任意正整數(shù)n,2Sn=λan-μ,數(shù)列{an}中任意兩不同項(xiàng)的和構(gòu)成集合A.
(1)證明無(wú)窮數(shù)列{an}為等比數(shù)列,并求λ的值;
(2)如果2010∈A,求μ的值;
(3)當(dāng)n≥1,設(shè)集合${B_n}=\{x|5μ•{3^{n-1}}<x<5μ•{3^n},x∈A\}$中元素的個(gè)數(shù)記為bn,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=$\frac{1}{2}$BC
(I)求證:AB1∥平面A1C1C;
(II)求直線BC1與平面A1C1C成角的正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若數(shù)列{bn}的前n項(xiàng)和為Tn,數(shù)列$\{\frac{1}{T_n}\}$的前n項(xiàng)和為Hn,求H2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)A,B,C均在球O的表面上,∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,球O到平面ABC的距離為3,則球O的表面積為100π.

查看答案和解析>>

同步練習(xí)冊(cè)答案