15.某民調(diào)機(jī)構(gòu)為了了解民眾是否支持英國(guó)脫離歐盟,隨機(jī)抽調(diào)了100名民眾,他們的年齡的頻數(shù)及支持英國(guó)脫離歐盟的人數(shù)分布如下表:
年齡段18-24歲25-49歲50-64歲65歲及以上
頻數(shù)35202520
支持脫歐的人數(shù)10101515
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為以50歲胃分界點(diǎn)對(duì)是否支持脫離歐盟的態(tài)度有差異;
年齡低于50歲的人數(shù)年齡不低于50歲的人數(shù)合計(jì)
支持“脫歐”人數(shù)
不支持“脫歐”人數(shù)
合計(jì)
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
K01.3232.0722.7063.8415.0246.635
(Ⅱ)若采用分層抽樣的方式從18-64歲且支持英國(guó)脫離歐盟的民眾中選出7人,再?gòu)倪@7人中隨機(jī)選出2人,求這2人至少有1人年齡在18-24歲的概率.

分析 (Ⅰ)根據(jù)統(tǒng)計(jì)數(shù)據(jù),可得2×2列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算K2的值,即可得到結(jié)論;
(Ⅱ)利用列舉法確定基本事件的個(gè)數(shù),即可得出這2人至少有1人年齡在18-24歲的概率.

解答 解:(Ⅰ)

年齡低于50歲的人數(shù)年齡不低于50歲的人數(shù)合計(jì)
支持“脫歐”人數(shù)203050
不支持“脫歐”人數(shù)351550
合計(jì)5545100
${K^2}=\frac{{100×{{(20×15-30×35)}^2}}}{55×45×50×50}≈9.091>6.635$
所以有99%的把握認(rèn)為以50歲為分界點(diǎn)對(duì)是否支持脫離歐盟的態(tài)度有差異.
(Ⅱ)18-24歲2人,25-49歲2人,50-64歲3人.
記18-24歲的兩人為A,B;25-49歲的兩人為C,D;50-64歲的三人為E,F(xiàn),G,
則AB,AC,AD,AE,AF,AG,BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,F(xiàn)G共21種,
其中含有A或B的有11種.
故$P=\frac{11}{21}$.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn),考查概率的計(jì)算,考查學(xué)生的閱讀與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正四棱臺(tái)(由正四棱錐截得的棱臺(tái)叫做正四棱臺(tái))上底面邊長(zhǎng)為6,高和下底面邊長(zhǎng)都是12,求它的側(cè)面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知$|{\overrightarrow a}|=6$,$|{\overrightarrow b}|=3\sqrt{3}$且向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30o,則$\overrightarrow a•\overrightarrow b$=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)為R上的偶函數(shù),g(x)為R上的奇函數(shù),且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數(shù)h(x)=f(x)-$\frac{1}{2}{log_2}({a•{2^x}+2\sqrt{2}a})({a>0})$在R上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的首項(xiàng)a1=2,數(shù)列{bn}為等比數(shù)列,且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,又b10b11=2017${\;}^{\frac{1}{10}}$,則a21=4034.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中m的值并估計(jì)居民月均用電量的中位數(shù);
(Ⅱ)現(xiàn)從第8組和第9組的居民中任選取2戶居民進(jìn)行訪問(wèn),則兩組中各有一戶被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在多面體ABCDEF中,平面ADEF與平面ABCD垂直,ADEF是正方形,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1,M為線段ED的中點(diǎn).
(1)求證:AM∥平面BEC;
(2)求證:BC⊥平面BDE;
(3)求三棱錐D-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,菱形ABCD的邊長(zhǎng)為12,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=6$\sqrt{2}$.

(1)求證:OD⊥平面ABC;
(2)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.關(guān)于函數(shù)$f(x)=\sqrt{3}{cos^2}x+2sinxcosx-\sqrt{3}{sin^2}x$,有如下問(wèn)題:
①$x=\frac{π}{12}$是f(x)的圖象的一條對(duì)稱軸;
②$?x∈R,f({\frac{π}{3}+x})=-f({\frac{π}{3}-x})$;
③將f(x)的圖象向右平移$\frac{π}{3}$個(gè)單位,可得到奇函數(shù)的圖象;
④?x1,x2∈R,|f(x1)-f(x2)|≥4.
其中真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案