A. | 2 | B. | $\sqrt{2}$ | C. | 1 | D. | $\frac{\sqrt{2}}{2}$ |
分析 根據(jù)題意,利用$\overrightarrow{BA}$,$\overrightarrow{BC}$的坐標(biāo),可得$\overrightarrow{BA}$,$\overrightarrow{BC}$的模,由數(shù)量積公式,可得$\overrightarrow{BA}•\overrightarrow{BC}$的值,進(jìn)而由cos∠B=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}$,可得cos∠B,由余弦函數(shù)的性質(zhì),可得∠B,最后由三角形面積公式,計(jì)算可得答案.
解答 解:根據(jù)題意,$\overrightarrow{AB}$=(cos23°,cos67°),則$\overrightarrow{BA}$=-(cos23°,sin23°),有|$\overrightarrow{BA}$|=1,
由于,$\overrightarrow{BC}$=(2cos68°,2cos22°)=2(cos68°,sin68°),則|$\overrightarrow{BC}$|=2,
則$\overrightarrow{BA}•\overrightarrow{BC}$=-2(cos23°cos68°+sin23°sin68°)=-2×cos45°=-$\sqrt{2}$,
可得:cos∠B=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}$=-$\frac{\sqrt{2}}{2}$,
則∠B=135°,
則S△ABC=$\frac{1}{2}$|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|sin∠B=$\frac{1}{2}×1×2×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$;
故選:D.
點(diǎn)評(píng) 本題考查數(shù)量積的坐標(biāo)運(yùn)算,關(guān)鍵是由余弦函數(shù)的和角公式求出$\overrightarrow{BA}$•$\overrightarrow{BC}$,注意角B是向量$\overrightarrow{BA}$、$\overrightarrow{BC}$的夾角,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x3 | B. | y=2|x| | C. | y=cosx | D. | $y=lnx-\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 672 | B. | 673 | C. | 3024 | D. | 1345 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25 | B. | 23 | C. | 21 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x2-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{2}$-x2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
次數(shù) | 1 | 2 | 3 | 4 |
人數(shù) | 1 | 4 | 4 | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com