【題目】某種商品在50個不同地區(qū)的零售價格全部介于13元與18元之間,將各地價格按如下方式分成五組:第一組,第二組,……,第五組.如圖是按上述分組方法得到的頻率分布直方圖.

1)求價格落在內(nèi)的地區(qū)數(shù);

2)借助頻率分布直方圖,估計該商品價格的中位數(shù)(精確到0.1);

3)現(xiàn)從,這兩組的全部樣本數(shù)據(jù)中,隨機選取兩個地區(qū)的零售價格,記為,,求事件的概率.

【答案】116;(215.7元;(3.

【解析】

1)根據(jù)總面積為求出價格落在內(nèi)的地區(qū)數(shù);

2)根據(jù)中位數(shù)兩邊的面積都是求出中位數(shù);

3)根據(jù)古典概型求解即可,首先求出基本事件總數(shù),再求出事件的事件數(shù)即可求出答案.

1)價格在內(nèi)的頻率為:

,

所以價格在內(nèi)的地區(qū)數(shù)為;

2)設價格中位數(shù)為,

,

解得(元);

3)由直方圖知,

價格在的地區(qū)數(shù)為,

設為,,

價格在的地區(qū)數(shù)為

設為,,,

時,

,,,3種情況,

時,

,,,,6種情況,

分別在內(nèi)時,

共有12種情況,

所以基本事件總數(shù)為21種,

事件所包含的基本事件個數(shù)有12種,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的所有頂點都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件求方程.

(1)已知頂點的坐標為,求外接圓的方程;

(2)若過點的直線被圓所截的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上的兩個點,點的坐標為,直線的斜率為.設拋物線的焦點在直線的下方.

)求k的取值范圍;

)設CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)為奇函數(shù),且有極小值.

1)求實數(shù)的值;

2)求實數(shù)的取值范圍;

3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的偶函數(shù)滿足,且,當時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知四邊形是邊長為的正方形,點在底面上的射影為底面的中心點,點在棱上,且的面積為1.

1)若點的中點,求證:平面平面

2)在棱上是否存在一點使得二面角的余弦值為?若存在,求出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次環(huán)保知識競賽, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:


組別

分組

頻數(shù)

頻率

1

[50,60

8

0 16

2

[60,70

a


3

[70,80

20

0 40

4

[80,90


0 08

5

[90,100]

2

b


合計



1)求出的值;

2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動

)求所抽取的2名同學中至少有1名同學來自第5組的概率;

)求所抽取的2名同學來自同一組的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,,,令表示集合所含元素的個數(shù).

1)寫出的值;

2)當時,寫出的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

同步練習冊答案