【題目】已知函數(shù)

1)當(dāng)時,求的定義域;

2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明;

3)若在區(qū)間上恒取正值,求實(shí)數(shù)的取值范圍.

【答案】1;(2)函數(shù)在區(qū)間上是減函數(shù),證明見解析;(3

【解析】

1)將代入得到的解析式,根據(jù)解析式要有意義,列出不等式,求解即可得到的定義域;
2)利用函數(shù)單調(diào)性的定義,令,先判斷出,再根據(jù)對數(shù)的單調(diào)性,判斷出,從而證明結(jié)結(jié)論;
3)將上恒取正值,等價為上恒成立,轉(zhuǎn)化為,利用的單調(diào)性即可求出的最小值,從而列出不等式,求解即可得到的取值范圍.

1)當(dāng)時,
,即
,即,
∴函數(shù)的定義域?yàn)?/span>;
2)函數(shù)在區(qū)間上是減函數(shù).
證明:任取,且
,

,

,
,,
,即
,

,
上是減函數(shù);
3)由(2)可知,上是減函數(shù),
上是單調(diào)遞減函數(shù),
上的最小值為
上恒取正值,即上恒成立,

,即,
,
,
,
的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,底面為正方形, ,平面平面, .

(1)求證: ;

(2)若, ,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q坐標(biāo)為,當(dāng)取得最小值時圓上至多有2個點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.

(1)寫出第一次服藥后,y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);

(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對于曲線上任意點(diǎn)處的切線,總存在上處的切線,使得,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)分別為、,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程;

(2)若直線和曲線只有一個交點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)將函數(shù)的圖象向左平移個單位后,所得圖象對應(yīng)的函數(shù)為.若關(guān)于的方程在區(qū)間上有兩個不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)在區(qū)間上的最大值為.

1)若,求的值;

2)若對任意的恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率都為50%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員四次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個隨機(jī)數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989

據(jù)此估計(jì),該運(yùn)動員四次投籃恰有兩次命中的概率為____

查看答案和解析>>

同步練習(xí)冊答案