【題目】《復仇者聯(lián)盟4:終局之戰(zhàn)》是安東尼·羅素和喬·羅素執(zhí)導的美國科幻電影,改編自美國漫威漫畫,自2019424日上映以來票房火爆.某電影院為了解在該影院觀看《復仇者聯(lián)盟4》的觀眾的年齡構(gòu)成情況,隨機抽取了100名觀眾的年齡,并分成,,,,七組,得到如圖所示的頻率分布直方圖.

1)求這100名觀眾年齡的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)、中位數(shù);

2)該電影院擬采用抽獎活動來增加趣味性,觀眾可以選擇是否參與抽獎活動(不參與抽獎活動按原價購票),活動方案如下:每張電影票價格提高10元,同時購買這樣電影票的每位觀眾可獲得3次抽獎機會,中獎1次則獎勵現(xiàn)金元,中獎2次則獎勵現(xiàn)金元,中獎三次則獎勵現(xiàn)金元,其中,已知觀眾每次中獎的概率均為.

①以某觀眾三次抽獎所獲得的獎金總額的數(shù)學期望為評判依據(jù),若要使抽獎方案對電影院有利,則最高可定為多少;

②據(jù)某時段內(nèi)的統(tǒng)計,當時該電影院有600名觀眾選擇參加抽獎活動,并且每增加1元,則參加抽獎活動的觀眾增加100.設該時間段內(nèi)觀影的總?cè)藬?shù)不變,抽獎活動給電影院帶來的利潤的期望為,求的最大值.

【答案】1;(2)①最高定為17元,才能使抽獎方案對電影院有利,②時利潤最大,為.

【解析】

1)由頻率分布直方圖求平均數(shù)以及中位數(shù)的方法求解即可;

2)①設觀眾三次抽獎所獲得的獎金總額為隨機變量,可能的取值為0,,,求出可能取值對應的概率,得出期望,使期望小于等于10,得出對電影院有利時的最大值;

②由期望的值以及題設條件得出的表達式,根據(jù)二次函數(shù)的性質(zhì),得出的最大值.

1)平均數(shù),

前三組的頻率之和為

前四組為

故中位數(shù)落在第4

設中位數(shù)為,則

解得,即中位數(shù)為.

2)①設觀眾三次抽獎所獲得的獎金總額為隨機變量,可能的取值為0,,

所以,

,解得

所以最高定為17元,才能使抽獎方案對電影院有利.

.

為二次函數(shù),其對稱軸

時,時,.

,因此時利潤最大,為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負方得0分。設在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負結(jié)果相互獨立,甲、乙的一局比賽中,甲先發(fā)球.則開始第4次發(fā)球時,甲、乙的比分為1比2的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是一個“數(shù)陣”:

1

1

1

其中每行都是公差不為0等差數(shù)列,每列都是等比數(shù)列,表示位于第i行第j列的數(shù).

1)寫出的值:

2)寫出的計算公式,以及第20201所在“數(shù)陣”中所在的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下說法:

一年按365天計算,兩名學生的生日相同的概率是;買彩票中獎的概率為0.001,那么買1 000張彩票就一定能中獎;乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~1010個數(shù)字中各抽取1,再比較大小,這種抽簽方法是公平的;昨天沒有下雨,則說明昨天氣象局的天氣預報降水概率是90%”是錯誤的.

根據(jù)我們所學的概率知識,其中說法正確的序號是___.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若(ac·cos B)·sin B=(bc·cos A)·sin A,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (mR)

1)當時,

①求函數(shù)x=1處的切線方程;

②求函數(shù)上的最大,最小值.

2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:annN*).若正整數(shù)kk≥5)使得a12+a22+…+ak2a1a2ak成立,則k=(

A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,若,則稱數(shù)列廣義遞增數(shù)列,若,則稱數(shù)列廣義遞減數(shù)列,否則稱數(shù)列擺動數(shù)列”.已知數(shù)列4項,且,則數(shù)列是擺動數(shù)列的概率為______.

查看答案和解析>>

同步練習冊答案