已知函數(shù)f(x)=1-
m
x+1
,定義域?yàn)椋?1,+∞),且f(2)=-1
(1)求m的值;
(2)試判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義加以證明;
(3)在定義域內(nèi)利用單調(diào)性解不等式f(x)<-1.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)把點(diǎn)代入求出即可,(2)設(shè)x1>x2>-1,根據(jù)定義直接證明,(3)根據(jù)不等式的解題步驟解出即可.
解答: 解:(1)把(2,-1)代入函數(shù)得:-1=1-
m
3
,解得:m=6;
(2)設(shè)x1>x2>-1,
∴f(x1)-f(x2)=1-
m
x1+1
-1+
m
x2+1

=
m(x1-x2)
(x2+1)(x1+1)
,
∵x1-x2>0,x2+1>0,x1+1>0,
∴f(x1)-f(x2)>0,
即:f(x1)>f(x2),
∴函數(shù)f(x)在定義域上是增函數(shù);
(3)解1-
6
x+1
<-1,
6
x+1
>2,
解得:x<2,
∴-1<x<2.
∴不等式的解集為:{x|-1<x<2}.
點(diǎn)評(píng):本題考察了用定義證明函數(shù)的單調(diào)性,不等式的解法,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知⊙O的半徑為5,兩弦AB、CD相交于AB的中點(diǎn)E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)有關(guān)規(guī)定,汽車尾氣中CO2(二氧化碳)的排放量超過(guò)130g/km,視為排放量超標(biāo).某市環(huán)保局對(duì)甲、乙兩型品牌車各抽取5輛進(jìn)行CO2排放量檢測(cè),所得數(shù)據(jù)如下表所示(單位:g/km).其中有兩輛乙型車的檢測(cè)數(shù)據(jù)不準(zhǔn)確,在表中用z,y表示.
甲型車 80 110 120 140 150
乙型車 100 120 x y 160
(Ⅰ)從被檢測(cè)的5輛甲型車中任取2輛,求這2輛車CO2排放量都不超標(biāo)的概率;
(Ⅱ)若5輛乙型車CO2排放量的平均值為120g/km,且80<x<130,求乙型車CO2排放量的方差的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
12
π
6
]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及對(duì)稱軸方程;
(2)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的最大值和最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i(其中i為虛數(shù)單位)
(1)當(dāng)復(fù)數(shù)z是純虛數(shù)時(shí),求實(shí)數(shù)m的值;
(2)若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在第三象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)集A={a1,a2,…,an}(0≤a1<a2<…<an,n≥2,n∈N*)具有性質(zhì)P:?i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷數(shù)集{1,2,3,4}是否具有性質(zhì)P,并說(shuō)明理由;
(2)證明:a1=0;
(3)證明:當(dāng)n=5時(shí),a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊正方形區(qū)域ABCD,現(xiàn)在要?jiǎng)澇鲆粋(gè)直角三角形AEF區(qū)域進(jìn)行綠化,滿足:EF=1米,設(shè)角AEF=θ,θ∈[
π
6
,
π
3
],邊界AE,AF,EF的費(fèi)用為每米1萬(wàn)元,區(qū)域內(nèi)的費(fèi)用為每平方米4萬(wàn)元.
(1)求總費(fèi)用y關(guān)于θ的函數(shù).
(2)求最小的總費(fèi)用和對(duì)應(yīng)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)為奇函數(shù),且f(x)關(guān)于x=1對(duì)稱,且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案